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Overview

Motivation:

There is growing concern about unintended behaviour when decision
making is delegated to artificial intelligence algorithms, e.g., algorithmic
collusion.

Regulators and stakeholders (e.g., AFM and OECD) are concerned
about algorithms learning to manipulate the market.

Will algorithms learn to manipulate electronic markets?

Can we determine when an algorithm will learn to manipulate the book?
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Contribution

Develop an inventory model of the limit order book.

Derive conditions to test when an algorithm will learn to manipulate the
book.

Results apply to any (generic) learning algorithm.

Manipulation in our model is unintentional, i.e., happens only when
individual actions are sequenced together in a particular order.

Market conditions in Nasdaq are conducive to algorithms learning to
manipulate the book
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Limit Order Book

Limit orders are price-contingent orders to buy or sell an asset.

Limit orders follow price-time priority, and collectively form the book.
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Figure: Limit order book.
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Manipulation to sell the asset without crossing spread I
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Quote-based manipulation.

Limit orders are submitted to both
sides of the book — intention is to
trade only on one side.

For example, if objective is to sell an
asset, then

submit a large buy limit order that
will be cancelled, and

submit a limit order on the ask
that is intended to result in a
transaction.
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Manipulation to sell the asset without crossing spread II
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Increase in buy-pressure is
interpreted as an expected
increase in the price.

A buy-heavy book is followed by
an increase in the arrival rate of
buy market orders that cross the
spread in anticipation of a price
increase.

These market orders lift the limit
sell order that is intended to result
in a transaction.
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Manipulation to sell the asset without crossing spread III
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The manipulative order, i.e., the
large limit buy,

is cancelled or expires, or
is inadvertently filled

Quote-based manipulation allows
one to buy or sell an asset at a
more favorable price than was
otherwise likely to occur, i.e., not
cross the spread.
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Volume Imbalance

Volume imbalance at time t

ωt =
V b

t − V a
t

V b
t + V a

t
∈ (−1, 1) (1)

V b
t volume at the best bid t

V a
t volume at the best ask

The book is
sell-heavy when ωt ∈ (−1,−1/3)
neutral when ωt ∈ [−1/3, 1/3]
buy-heavy when ωt ∈ (1/3, 1)
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Volume Imbalance — market order type

More market buys when imbalance is buy-heavy, more market sells
when imbalance is sell-heavy.

Sell-Heavy Neutral Buy-Heavy
Imbalance Regime
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Figure: AAPL, April 2023, Nasdaq.

Cartea, Chang, García-Arenas OMI Spoofing and Manipulating February 7, 2024 9 / 37



Overview Manipulation Model Results References

Volume Imbalance and Order Book Activity — arrival of market orders

Arrival rate of buys is highest when buy-heavy

Arrival rate of sells is highest when sell-heavy

Table: Arrival rates of market orders (MOs) for April 2023.

Ticker

Buy MO arrival rates

(per second)

Sell MO arrival rates

(per second)

SH N BH SH N BH

AAPL 0.060 0.176 0.525 0.606 0.179 0.058

AMZN 0.067 0.168 0.447 0.456 0.167 0.065

INTC 0.014 0.042 0.138 0.139 0.036 0.013
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Volume Imbalance and Fill Probabilities

Fill probabilities of
bids and offers are similar when the book is neutral
offers are higher when the book is buy-heavy
bids are higher when the book is sell-heavy

Table: Fill probabilities.

Ticker Side
5 seconds 1 second 0.5 seconds

SH N BH SH N BH SH N BH

AAPL
Ask 0.4393 0.4782 0.5819 0.1048 0.1286 0.1910 0.0449 0.0579 0.0928

Bid 0.6210 0.5207 0.4687 0.2196 0.1499 0.1180 0.1121 0.0697 0.0518

AMZN
Ask 0.4155 0.4651 0.5669 0.1008 0.1232 0.1903 0.0451 0.0566 0.0933

Bid 0.5587 0.4570 0.4201 0.1767 0.1228 0.1044 0.0863 0.0566 0.0479

INTC
Ask 0.0970 0.1384 0.2353 0.0158 0.0222 0.0561 0.0071 0.0095 0.0274

Bid 0.2124 0.1314 0.1116 0.0501 0.0211 0.0161 0.0251 0.0089 0.0070
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Inventory Model

Basic setup:

The expected bid-ask spread is ϑ > 0.

The market maker interacts with the order book at discrete times
t = 0, 1, 2, ...,+∞.

Market maker delegates decision making to a learning algorithm.

The algorithm has convergence guarantees.

Midpoint of the bid-ask spread proxies the fundamental value of the
asset Z .

At each time point, the value of the asset either goes up by one-tick
(Z + φ), or goes down by one-tick (Z − φ).
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States and Actions

States S = Q× Ω:

Q = {−q̄, ..., 0, ..., q̄} is the level of inventory.

Ω = {BH,N,SH} is the three regimes of volume imbalance.

pb
ω ∈ (0, 1) and pa

ω ∈ (0, 1) are the fill probabilities of a limit buy and a
limit sell order being filled between [t , t + 1) in each regime ω ∈ Ω.

Actions at time t :
Submit a buy limit order (LB) on the best bid or a sell limit order (LS) on
the best offer

If order is not executed between [t , t + 1), then it is cancelled before start of
t + 1
LB and LS are for one unit of the asset

Submit a large buy limit order (LLB) on the best bid or a large sell limit
order (LLS) on the best offer and cancel order before start of t + 1

Submit a market order to buy (MB) or to sell (MS) one unit of the asset.

Do nothing (DN).
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Data and other assumptions

Empirically we find
Average volume of limit orders and limit order cancellations are similar in
size under each volume imbalance regime.
Arrival rates of limit orders are higher than the arrival rates of limit order
cancellations.
More buy (sell) limit orders than sell (buy) limit orders when the book is
buy-heavy (sell-heavy).

Market participants cannot react instantaneously, so have a delay.
We assume

p(BH|ω, LLB) = 1 and p(SH|ω, LLS) = 1 for all ω ∈ Ω.
changes in fill probabilities come into effect at time t + 1.

Thus, manipulation can occur even if the market maker does not explicitly
encode the manipulation as a possible action into the learning algorithm.
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Utility I

The objective of the market maker is to maximize the present value of
her wealth subject to a running inventory penalty.

The total wealth X + Z q of the market maker is the sum of her cash
position X and the marked-to-market value of the inventory Z q.

One-step utility:

u(s, a, s′) = Y (s, a, s′)− α (q′)2 (2)

=⇒ optimization problem of learning algorithm is

sup
σ∈Σ

Eσ

[
∞∑
t=0

δt
(

Y (st , at , st+1)− α q2
t+1

) ∣∣∣∣∣ s0 = s

]
(3)
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Optimal Strategy when q > 0

Let q > 0. Then, for each state s = (ω, q), there exist cutoff values of the
inventory aversion parameter α0(ω, q) < α1(ω, q) < α2(ω, q) < α3(ω, q) such
that the optimal stationary pure Markov strategy σ∗ ∈ ΣSPM is given by

σ∗(ω, q) =



LB if α ∈
(
0, α0(ω, q)

)
,

LLB if α ∈
(
α0(ω, q), α1(ω, q)

)
,

LLS if α ∈
(
α1(ω, q), α2(ω, q)

)
,

LS if α ∈
(
α2(ω, q), α3(ω, q)

)
,

MS if α ∈
(
α3(ω, q),+∞

)
.

(4)

α0(ω, q) α1(ω, q) α2(ω, q) α3(ω, q)

LB LLB LLS LS MS

Figure: Optimal action choice for each state s = (ω, q) for q > 0.

Cartea, Chang, García-Arenas OMI Spoofing and Manipulating February 7, 2024 16 / 37



Overview Manipulation Model Results References

Manipulation I

Manipulation

occurs if a large limit order is placed at time t on the side of the book
that counters one’s objective to buy or sell an asset, and the following
action at time t + 1 is to place a limit order on the side of the book that
aligns with one’s objective to buy or sell an asset.

When q > 0, we want to revert to q = 0, so manipulation occurs if the
sequence is initiated by LLB and followed by LS or LLS.
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Manipulation II

A manipulative sequence when the manipulative order is not filled.

Type I:

Manipulation

α0(ω, q) α1(ω, q)

LLB
Starting in s = (ω, q)

at time t

α1(ω
′, q′)α2(ω

′, q′) α3(ω
′, q′)

LLB LLS LS MS Transition to s′ = (BH, q)
at time t + 1

Shaded area is I1(s) =
(
max{α0(ω, q), α1(BH, q)},min{α1(ω, q), α3(BH, q)}

)
̸=

∅ .
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Manipulation III

A manipulative sequence when the manipulative order is caught out.

Type II:

Manipulation

α0(ω, q) α1(ω, q)

LLB
Starting in s = (ω, q)

at time t

α1(ω
′, q′)α2(ω

′, q′)α3(ω
′, q′)

LLB LLS LS MS Transition to s′ = (BH, q + 1)
at time t + 1

Shaded area is I2(s) =
(
max{α0(ω, q+1), α1(BH, q)},min{α1(ω, q), α3(BH, q+

1)}
)
̸= ∅ .
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Manipulation IV

Theorem

If the conditions

pb
BH < pa

BH (C1)

pa
SH < pb

SH (C2)

hold, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i) s = (SH, q > 0),
(ii) s = (BH, q < 0), and (iii) s = (N, q) for either q > 0 or q < 0.

In other words, there exist values of α such that the algorithm will learn to
manipulate the book.
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Manipulation V

Theorem

Let (C1) and (C2) hold, and let

pa
BH − pb

SH < min

ß
(pb

SH − pb
N)

pN|BH

pBH|BH
, (pb

SH − pb
N)

pN|N

pBH|N

™
pb

SH − pa
BH < min

ß
(pa

BH − pa
N)

pN|SH

pSH|SH
, (pa

BH − pa
N)

pN|N

pSH|N

™ (C3)

hold.

1 If (pb
N − pa

N) >
δ

1 + δ
(pb

SH − pa
BH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for

all states s = (N, q > 0).

2 If (pa
N − pb

N) >
δ

1 + δ
(pa

BH − pb
SH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for

all states s = (N, q < 0).
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Nasdaq

Table: Testable conditions.

Ticker
5 seconds 1 second 0.5 seconds

(C1), (C2) (C3) Side (C1), (C2) (C3) Side (C1), (C2) (C3) Side

AAPL ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0

AMZN ✓ ✓ q < 0 ✓ ✓ q > 0 ✓ ✓ q > 0

INTC ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0
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Manipulation and ϑ

Proposition

If ϑ → 0, then the algorithm will not learn to manipulate the order book for
any state s = (ω, q) where q ̸= 0.

If quoted spread is zero, manipulating the book does not provide any
advantages over market orders (limit orders do not obtain better prices
than market orders)

manipulation is not optimal because inadvertent fills are penalised
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Spoofing and Fill Preferences
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Figure: Fill preferences

In our model,
quote-based manipulation contains:

Spoofing is the manipulative
sequence + preference for the
manipulative order not to get
caught out.

Manipulation for round-trip trade
is the manipulative sequence +
preference for the manipulative
order to get filled.

Cartea, Chang, García-Arenas OMI Spoofing and Manipulating February 7, 2024 24 / 37



Overview Manipulation Model Results References

Multiple Market Makers

In the offline learning setting, the algorithms either coordinate (i.e.,
market makers ride the manipulative sequences of each other) or
mis-coordinate (i.e., market makers send large opposing orders that
cancel each other out) depending on their initial inventory.

In the online learning setting, the algorithms learn to coordinate.
If the market makers start with zero inventory, then they coordinate by riding
the sequences of each other.
If the market makers start with the same level of inventory or with opposing
levels of inventory, then they coordinate by allowing one to ride the other’s
sequences to avoid their large limit orders cancelling each other out.
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Legal Implications

EU:
Article 12(2)(c) of Regulation (EU) No 596/2014 makes manipulation illegal.

RTS 6 and 7 (part of MiFID II) require firms to test their trading algorithms so they
do not behave in an unintended manner or contribute to disorderly trading
conditions.

US (securities):
Section 9(a)(2) of the Securities Exchange Act of 1934 makes manipulation
illegal.

FINRA’s rule requires algorithmic trading developers to register as securities
traders, and are therefore subject to the SEC and FINRA rules that govern their
trading activities.

US (commodities):
Dodd–Frank Act of 2010 defines spoofing as bidding or offering with the intent to
cancel the bid or offer before execution. Spoofing is illegal under the Act.

Our definition captures the spirit of DF but is broader in scope, e.g., expired
orders.

Narrow focus of DF misses other forms of quote-based manipulation.
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Volume of market orders

Volume of buys is lowest when buy-heavy

Volume of sells is lowest when sell-heavy

Table: Average volume of market orders (MOs) for April 2023.

Ticker
Buy MO average volume Sell MO average volume

SH N BH SH N BH

AAPL 145.58 111.16 62.27 64.29 103.11 135.29

AMZN 205.95 108.59 61.68 60.92 107.78 181.50

INTC 212.79 256.93 143.67 134.62 266.80 227.45
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Volume Imbalance and Order Book Activity — arrival of limit orders

Table: Arrival rates of limit orders (LOs) for April 2023.

Ticker

Buy LO arrival rates

(per second)

Sell LO arrival rates

(per second)

SH N BH SH N BH

AAPL 4.245 7.000 4.129 4.285 6.970 4.303

AMZN 4.367 7.346 4.381 4.637 7.600 4.213

INTC 1.090 2.386 1.829 1.686 2.330 1.106
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Volume of limit orders

Volume of buys is largest when buy-heavy

Volume of sells is largest when sell-heavy

Table: Average volume of limit orders (LOs) for April 2023.

Ticker
Buy LO average volume Sell LO average volume

SH N BH SH N BH

AAPL 98.19 109.51 112.32 115.30 109.50 97.40

AMZN 87.95 96.32 101.95 101.53 95.44 87.83

INTC 298.83 372.36 415.56 415.82 364.61 292.29
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Volume Imbalance and Order Book Activity — arrival of cancellations

Table: Arrival rates of limit order cancellations for April 2023.

Ticker

Arrival rates of limit buy

cancellation (per second)

Arrival rates of limit sell

cancellation (per second)

SH N BH SH N BH

AAPL 3.092 6.037 3.785 3.946 6.154 3.334

AMZN 3.594 6.464 3.631 3.885 6.734 3.529

INTC 0.818 1.812 1.308 1.193 1.755 0.801
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Volume of cancellations

Volume of limit buy cancellations is largest when buy-heavy

Volume of limit sell cancellations is largest when sell-heavy

Table: Average volume of limit order cancellations for April 2023.

Ticker

Average volume of

limit buy cancellations

Average volume of

limit sell cancellations

SH N BH SH N BH

AAPL 92.25 109.29 112.92 116.77 111.55 91.26

AMZN 78.53 95.69 106.34 103.48 94.28 79.87

INTC 230.90 393.75 499.81 489.77 392.68 228.14
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Expected one-step utility:

ū(s, a) =



pb
ω ϑ/2 − α pb

ω (q + 1)2 − α (1 − pb
ω) q2 for a = {LB, LLB} ,

pa
ω ϑ/2 − α pa

ω (q − 1)2 − α (1 − pa
ω) q2 for a = {LS, LLS} ,

−ϑ/2 − α (q + 1)2 for a = MB ,

−ϑ/2 − α (q − 1)2 for a = MS ,

−α q2 for a = DN .

(5)

Behaviour from (2) is consistent with inventory models:

Behaviour depends on the level of inventory, and there is a preferred
inventory position, e.g., Amihud and Mendelson (1986).

Prefer to sell if inventory is long and prefer to buy if inventory is short,
e.g., Stoll (1978) and Ho and Stoll (1981).
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Non-Deterministic Transitions

Theorem
Let (C1) and (C2) hold. If the transition probabilities associated with large
limit orders are such that

p(BH |ω, LLB) = 1 − κ > pBH|ω , p(N |ω, LLB) =
κ

2
< pN|ω , p(SH |ω, LLB) =

κ

2
< pSH|ω ,

p(SH |ω, LLS) = 1 − κ > pSH|ω , p(N |ω, LLS) =
κ

2
< pN|ω , p(BH |ω, LLS) =

κ

2
< pBH|ω ,

(C4)

hold for all ω ∈ Ω. Then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i)
s = (SH, q > 0), (ii) s = (BH, q < 0), and (iii) s = (N, q) for either q > 0 or
q < 0.
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Multiple Market Makers I

Table: AMZN: Average number of manipulative sequences over 50 trading intervals.
Agent 1 uses α = 10−4, agent 2 uses α = 10−5.

Setup
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

Baseline

5 seconds 24.87 20.87 20.79 25.93 21.97 22.11

1 second 25.22 14.92 14.78 29.25 18.52 18.77

0.5 seconds 27.03 14.51 14.52 32.42 17.37 14.45

Offline

5 seconds 24.92 26.29 21.01 22.65 20.85 22.52

1 second 27.01 29.62 17.12 19.02 17.46 19.40

0.5 seconds 30.71 32.76 16.20 18.32 22.05 18.27

Online

5 seconds 24.40 25.89 20.47 22.12 20.41 22.04

1 second 22.49 29.16 12.69 19.26 11.98 18.16

0.5 seconds 21.27 32.13 1.21 15.20 1.12 14.43
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Multiple Market Makers II

Table: AMZN: Average manipulation statistics.

Setup ∆t
Mismatching manipulative orders Single manipulative order

Zero inv. Same inv. Opposing inv. Zero inv. Same inv. Opposing inv.

Offline

5s 0.1554% 0.2388% 0.4408% 13.46 18.42 18.75

1s 0.1215% 1.3516% 0.0054% 22.47 22.01 29.52

0.5s 0% 0% 0% 19.07 18.71 34.65

Online

5s 0.2256% 0.3738% 0.4949% 19.39 21.58 21.92

1s 0.4190% 1.8937% 2.3348% 24.25 26.66 23.93

0.5s 0.7635% 0% 0% 25.25 25.96 25.69
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