Modeling mortality with pandemics:
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Motivation |

@ The Lee-Carter approach by Lee and Carter (1992) is among the earliest model for
stochastic mortality forecasting. With many extensions thereof in recent years.

o Lee-Carter model is effective in capturing a general mortality trend
— does not account for large, unexpected jumps caused by e.g. pandemics or wars.

o Lee and Carter (1992) treat the 1918 influenza (spanish flu) as an anomaly and use an
intervention model, effectively removing its influence.
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Motivation Il

o Earliest methods relied on outlier techniques (e.g. Li & Chan, 2005) and remove potential
data points.

@ H. Chen and Cox (2009) incorporate a jump processes into the Lee-Carter model.
— either permanent or transitory mortality shocks.

Adaptation by Liu and Li (2015) to account for age dependent shock.

@ More recently, other approaches haven been introduced (e.g. F.-Y. Chen et al., 2022;
Robben & Antonio, 2023; van Berkum et al., 2022).
— All assume that the shock completely disappears the next period

@ We introduce a model, where the shock effect slowly vanishes over time.
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Vanishing Effects
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Figure: Log Death Rates for Spain
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Lee-Carter Model

@ Let D, ; denote the total number of deaths and E, ; central exposure to risk, with
T =2x1,T2,...,L4 and t =1t1,ta,..., t1.
@ We denote m, ; to be the central mortality rate given by

m . Dmt
x,t — .
E;tt

@ The Lee-Carter model including a centered error term is as follows

In (ma},t) = Qg + ﬁ:{:’it + Ex,ts

where e, ¢ o (0,02).
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Some Shock Extensions

e Extension of x; by H. Chen and Cox (2009) that allows for transitory effects.

@ Adaption of Chen and Cox by Liu and Li (2015) to account for an age dependent shock.

e Liu and Li (2015) defined three different variants of their shock model. The one closest to
our adaptation is given by

In (mx,t) = Qg + /Bx/it + + €zt (1)
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Some Shock Extensions

Extension of k; by H. Chen and Cox (2009) that allows for transitory effects.

Adaption of Chen and Cox by Liu and Li (2015) to account for an age dependent shock.

Liu and Li (2015) defined three different variants of their shock model. The one closest to
our adaptation is given by

In (Mg ) = g + Bakie + BV NY: + ens. (1)

Ny € {0,1} represents a binary variable that equals one if a mortality jump occurs in year
t and zero otherwise.

Y; denotes a jump severity variable, measuring the effect of the mortality jump.

The parameters ﬁg(;]) denote a new age pattern of shocks
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Own Model Proposition

@ Our model extents the variant of Liu and Li (2015) by introducing a vanishing effect J;
controlled by the parameter a

In (mx,t) =ay + ﬁxﬁt + + Ext

(2)
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Own Model Proposition

@ Our model extents the variant of Liu and Li (2015) by introducing a vanishing effect J;
controlled by the parameter a

In (mx,t) =ay + ﬁx”t + 5:5;])‘]15 t+eat (2)
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Own Model Proposition

@ Our model extents the variant of Liu and Li (2015) by introducing a vanishing effect J;
controlled by the parameter a

In (Mmgt) = g + Bokr + B;E,.‘])Jt + ext

B (2)
Ji = aJi—1 + NiYy,

where a € [0,1) controls the rate of decay.
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Own Model Proposition

@ Our model extents the variant of Liu and Li (2015) by introducing a vanishing effect J;
controlled by the parameter a

In (Mmgt) = g + Bokr + B,E;J)Jt + ext

B (2)
Ji = aJi—1 + NiYy,

where a € [0,1) controls the rate of decay.
e Own model is a generalization of Eq. (1) that is recovered if a = 0.

@ The time effect x; is assumed to be a random walk with drift

Kt = Ke—1 +d+ &, & Ziﬁl./\/(o,ag).
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Mortality Improvements

@ Two common routes of estimation called Route | and Route Il in the terminology of
Haberman and Renshaw (2012).

@ The traditional approach (Route |) estimates mortality rates directly.

@ Route Il models the first differences of log mortality rates, called mortality improvements.

@ Mortality improvements are given by

Zpy =In(mgr1) —In(mgy).

@ Own model specification of Eq. (2) is then

Zypt = Bo (Kt41 — Kt) + @(E‘]) (Jeg1 — Ji) +ean
Zoy = Bo (d+ &1) + BY AT + €0, (3)

. iid
where €,y = €441 — €z With g, ~

(0,202).
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|dentifiability Constraints |

The Lee Carter model suffers from non-identifiability.

Own approach of Eq. (3) can be thought an extension of the Lee Carter model.

According to Hunt and Blake (2020, Theorem 1.) the typical Lee Carter transformations
can be generalized into higher dimensions.

Let b, = (Bs, 3))T and v; = (Aky, AJ;)T, then Eq. (2) can written as

Zxﬂg = b}vt + ezt

Let there be a (2 x 2) invertible matrix A, then the parameters can be transformed using

{bs, 01} = {b, A7 Avy ).

Since A € R?*2 there are a total of four free parameters
— we need to impose four identifiability constraints !
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Identifiability Constraints |l

@ To make the model identifiable we impose the standard sum-to-one constraints
A A
Zﬁx =1 and Zﬁ;‘]) =1.
=1 r=1

@ Other constraints are possible, i.e. like using the Euclidean norm.

In addition, we apply a corner constraint and set AJ;, = 0 as well as Ak, =d.

o Constraints on the age parameters are the same as Liu and Li (2015).
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Parameter Estimation

Parameter estimation done in a Bayesian setting.

NIMBLE (Numerical Inference for statistical Models for Bayesian and Likelihood
Estimation) (de Valpine et al., 2017)

NIMBLE is a framework for writing statistical models and algorithms.

Can be accessed in R via the nimble package (de Valpine et al., 2023)

Allows to sample discrete parameters and lets you choose which sampler to select for each
parameter.
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Prior Overview

Parameter

Prior Distribution Hyperprior 1

Hyperprior 2

Age Parameter
(/817 tee 7ﬂA)

J J
(87.....87)

Time Parameter
A:‘it
Ny

Y
a

Other Parameters
O¢

Dirichlet(1,...,1) -
Dirichlet(1,...,1) -

Are % N (d, 03)
N, % Bern(p) p ~ Beta(1, 20)

iid
Y, ~ N(py,0%) pry ~ N4(0,5)
a ~ Beta(1,5) -

d ~ N(0,5)

JENN+(072) -

gg¢ ~ N+(0, 2)

Oy ~ N+(O, 2)

Table: Selection of Priors
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@ We obtained death rates for countries which were heavily affected by the COVID-19
Pandemic, according to deaths per 100 K people
(https://coronavirus.jhu.edu/data/mortality).

e Data from two sources: Human Mortality Database (HMD) and Eurostat.

Country Year Source

Italy 1980 - 2021 Eurostat (demo_magec)
2022 Eurostat (demo_r_mkw_05)

Spain 1980 - 2021 Eurostat (demo_magec)
2022 Eurostat (demo_r_mkw_05)

United States 1980 - 2021 HMD

Table: Sources of Data

@ Total of A =10 age groups with = € [0, 10), [10, 20),...,[90, c0).

e T = 41 years, respectively T' = 42 (for european countries)
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Validation Approach

Compare own modelling approach with that of Liu and Li (2015) for all three countries.

Classical out-of-sample evaluation not feasible due to pandemic’s recent occurrence.

Comparison of in-sample fit only, via widely applicable or Watanabe-Akaike information
criterion (WAIC; Watanabe, 2010) as well as the leave-one-out cross validated predictive
density (LOO-CV).

The LOO-CV gets multiplied by -2 to be on the deviance scale (lower is better).
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Results |

Model Italy Spain us
WAIC

Own -1568.39 -1534.34 -1898.16
Liu-Li -1569.27 -1526.26 -1896.61
LOO-CV

Own -1563.38  -1527.30 -1890.85
Liu-Li -1564.92 -1517.83  -1889.60

Table: In-Sample Fit comparison.
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Results ||
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Figure: Posterior mean estimate of N; (Jump occurrence) for each country.
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Results I
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Figure: Posterior estimate of py (mean of jump effect) for each country.
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Results IV
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Figure: Posterior estimate of the vanishing parameter a for each country.
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Results V
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Figure: Age Pattern of 53@”. Thick line denotes posterior mean, colored shades denote 50%- posterior
intervals. Light gray shades show posterior estimates of the other countries.
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@ Analyse how jump models affect forecasts of mortality rates

@ Use a hierarchical structure to estimate the vanishing parameter a as well as jump
parameters py and oy for multiple countries jointly.

@ Use some regularization on the vanishing parameter a, e.g. the horseshoe prior.
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Thank you for your attention!
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In Sample Criteria |

@ The WAIC is based on the log pointwise predictive density (Ippd) defined as

Ippd = Zln/ (:10)p(6]y:)do

where y1,...,yn denotes the data at hand.

o The above quantity is computed using draws from the posterior where 6(5) denote the
usual simulations with s = 1,....5, then

- N 1 S
lppd = > "In (S Zp(yz-w@))
1=1 s=1
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In Sample Criteria I

e The WAIC is given by

WAIC = —2|ppd + 2Pwaic

Pwaic = ZVS <1np yil6© ))

where V2, denotes the sample variance over all s posterior draws.

Julius Goes, Karim Barigou, Anne Leucht Modeling mortaliy with pandemics Longevity 18 25/29



In Sample Criteria Ill

@ The leave-one-out predictive density (Ippd,,,) in a Bayesian setting is calculated by

N
Ippdige = Y Inp(yily—i),
=1

where
pyily—i) = / p(il0)p(0ly—i)do

@ Instead of estimating the posterior p(8|y—;) for each of the N cross validation points, the
density can be approximated using importance sampling (Vehtari et al., 2017).

@ For the Ippd,,, to be on the deviance scale we calculate loo-cv = —2lppd,,
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Sampler Overview

Sampler Parameter
AF Slice Sampler

(B1s---,Ba)
(304

Ny vte{l,...,T}

Binary Sampler

Gibbs
d
p
Random Walk Metropolis
O¢
O¢

Slice Sampler
Alﬁ)t Vt€{1,7T}

He
oy

Table: Overview of Samplers
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Death Rates Italy Il
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