
How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk

Julia Anna Bingler* Mathias Kraus** <u>Markus Leippold</u>*** Nicolas Webersinke**

*Council on Economic Policies (CEP) **FAU Erlangen-Nuremberg ***University of Zurich and Swiss Finance Institute (SFI)

We need transparent information on climate risk exposure

Previous literature

- Climate-related risks are priced, particularly transition risk:
 - Bolton and Kacperczyk (2021a); Monasterolo and De Angelis (2020); Engle et al. (2020); Kölbel et al. (2022); Sautner et al. (2022)
- However, full risk may not be captured, e.g., for physical climate risk:
 - Hong et al. (2019); Baldauf et al. (2020); Bakkensen and Barrage (2021); Gostlow (2022).
- Growing body of literature argues that climate-related disclosures are an essential prerequisite to managing and mitigating climate-related financial risks
 - Grewal et al. (2019); Hong et al. (2019); Krueger et al. (2020); Bolton and Kacperczyk (2021a); Deng et al. (2022).
- Disclosures tend to suffer from greenwashing and severe inaccuracies
 - Kim and Lyon (2015); Marquis et al. (2016); Fabrizio and Kim (2019).
- Supporters of the Principles of Responsible Investing (PRI) do not necessarily have better ESG ratings.
 - Gibson et al. (2021); Kim and Yoon (2022).

What our paper does

• Can we rely on ESG ratings?

We construct a measure, the Cheap Talk Index (CTI), that may more accurately capture the quality of climate-related disclosure.

• Can we avoid cheap talk and improve availability of decision-useful information?

We ask whether initiatives like the TCFD, SBTi, or Climate Action 100+ help to alleviate this problem.

• Does cheap talk have some real effects?

We ask whether cheap talk relates to emissions and negative news coverage (reputation risk).

Dataset

Using annual reports of all the MSCI World constituents from 2010 to 2020:

- Commitments and actions related to climate mitigation measures.
- Specificity of commitments.
- Define the Cheap Talk Index (CTI).

Using emission data from Urgentem/ICE:

- Includes Scope 1, 2, and 3 emissions.
- Differentiates between reported and estimated emissions.

Using environmental news incidents from RepRisk:

• Creating a controversy index out of severity, novelty, and reach.

1. Signaling

Hypothesis 1: Signaling

A firms' public support for the **TCFD** recommendations is **negatively associated with cheap talk**.

- Pre-commitment mechanism might explain the public TCFD support. Pre-commitment to disclosures maximizes value ex-ante and improves risk-sharing (Diamond, 1985).
- Signaling (and credibility) is an attempt to reduce information costs for investors and to reduce climate risk uncertainty premium Bolton and Kacperczyk (2021b); Chen et al. (2020).

2. Credibility

Hypothesis 2: Credibility

A firms' public announcement to set a third party verified science-based target (SBTi) is negatively associated with cheap talk.

• Firms might be better off if they work towards third-party verification to differentiate themselves from firms that apply managerial "cheap talk" (Almazan et al., 2008; Bingler et al., 2022).

3. Ownership and Engagement

Hypothesis 3: Active Engagement

Being part of the **Climate Action 100+** active ownership and engagement target companies is **negatively associated with cheap talk**.

- Previous literature on ESG:
 - Institutional ownwership is associated with higher ESG transparency.
 - Targeted engagement strategies and active ownership enhance corporate sustainability performance and transparency.
- But what about active engagement on climate-related matters?

4. Cheap talk and emission reduction

- Many companies may promise to address climate change to improve their public image but often fail to take concrete action to reduce their greenhouse gas emissions.
- Does a company's cheap talk imply that it takes fewer climate actions relative to their peers?

Hypothesis 4: Emission

A high level of cheap talk in climate commitments indicates that companies are **not genuinely committed** to significantly reducing greenhouse gas emissions.

5. Cheap talk and negative media coverage

Hypothesis 5: Restoring reputation

Heightened controversial news coverage concerning environmental incidents prompts an increase in cheap talk about a company's climate commitments.

• Cheap talk may potentially serve as a way to restore their reputation and legitimacy.

Hypothesis 6: Reputation risk

A high level of cheap talk in climate commitments **leads to more** controversial news coverage.

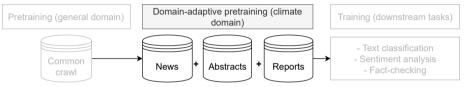
• Cheap talk in climate commitments may signify inadequate management and inconsistent climate strategies.

Creating ClimateBERT

Measuring Firm-Level Cheap Talk and Sentiment

Results

Conclusion


Creating a climate-specific language model Pretrained language models in NLP

- Why not use a keyword-based approach?
 - Cao et al. (2021) show how corporations adjust their wording to "Al"-based algorithms.
 - Climate-related wording could vary substantially by source (Kim and Kang, 2018).
 - Deep learning techniques that promise higher accuracy are gradually replacing these approaches (e.g., Kölbel et al., 2022; Bingler et al., 2022; Callaghan et al., 2021; Wang et al., 2021).
 - Deep learning in NLP allows for impressive results, outperforming traditional methods by large margins (Varini et al., 2020).
- We go one step further:
 - We train climateBERT (Webersinke et al., 2022) on a large corpus of climate-relevant text (we use DistillRoberta, see Hershcovich et al. (2022) on efficient NLP methods).

Collecting climate-specific text data

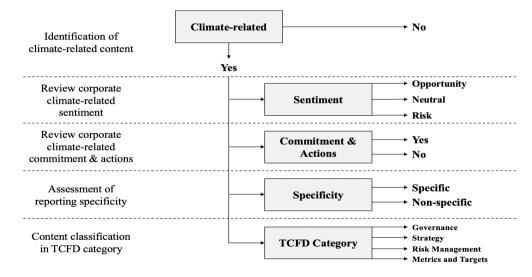
Pretraining requires a large corpus of data

• Sequence of training phases:

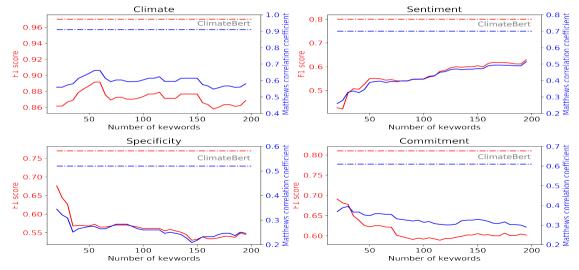
• Corpus used for pretraining (Proceedings, AAAI 2022, Fall Symposium):

Dataset	Num. of	Avg. num. of wor		of words
	paragraphs	Q1	Mean	Q3
News	1,025,412	34	56	65
Abstracts	530,819	165	218	260
Reports	490,292	34	65	79
Total	2,046,523	36	107	168

Creating ClimateBERT


Measuring Firm-Level Cheap Talk and Sentiment

Conclusion


Classification hierarchy

Task setup for analyzing climate-related disclosures

How well does ClimateBERT perform?

A comparison with keyword-based approaches

Creating ClimateBERT

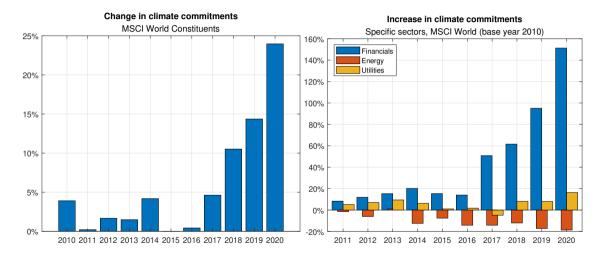
Measuring Firm-Level Cheap Talk and Sentiment

Results

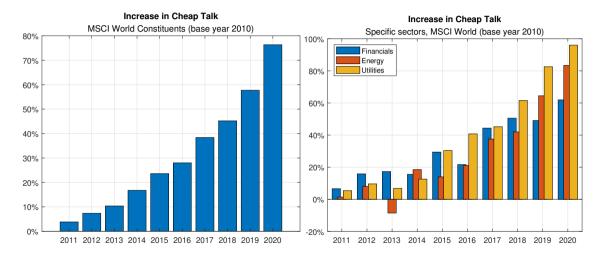
Conclusion

Data and Methodology

- Sample: 14,584 annual reports of the **1,500 MSCI World index firms** for the fiscal years 2010-2020
- ClimateBert-based dependent variable: Cheap talk index


$$CTI_{i,t} = \frac{COMMIT \cap NONSPEC_{i,t}}{COMMIT_{i,t}},$$

• Panel regression setup for Hypotheses 1 to 3:


$$CTI_{i,t} = \alpha + \beta_T TCFD_{i,t} + \beta_S SBT_{i,t} + \beta_C ClimAct100_{i,t} + \beta_X X_{i,t} + \eta_i + \delta_i \times \nu_t + \epsilon_{i,t},$$

with different financial controls X_t .

Preliminary Analysis I: Changes in Commitments

Preliminary Analysis II: Changes in Commitments (Financials)

Full Sample

	(I) Main	(II) Main with controls	(III) Main lagged	(IV) Mandatory	(V) Mandatory lagged
ClimAct100	-0.0633***	-0.0357***		-0.0569***	
	(0.0000)	(0.0033)		(0.0000)	
SBT	-0.0092	0.0009		0.0150	
	(0.4071)	(0.9407)		(0.2306)	
TCFD	0.0347**	0.0390**		0.0847***	
	(0.0274)	(0.0175)		(0.0000)	
ClimAct100lag1			-0.0398***		-0.0641***
			(0.0000)		(0.0000)
SBTlag1			-0.0031		0.0180
			(0.7938)		(0.2359)
TCFDlag1			0.0250*		0.0662***
			(0.0630)		(0.0000)
Country FE	Yes	Yes	Yes	No	No
Sector \times Year FE	Yes	Yes	Yes	Yes	Yes
R-squared	0.2575	0.2825	0.2819	0.1893	0.1865
No. Observations	12,943	11,044	11,044	10,543	10,543

Subsample, reporting years 2017 to 2020

	(I) Main	(II) Main with controls	(III) Main lagged	(IV) Mandatory	(V) Mandatory lagged
ClimAct100	-0.0640***	-0.0408***		-0.0492***	
	(0.0000)	(0.0014)		(0.0002)	
SBT	-0.0086	0.0008		0.0128	
	(0.4511)	(0.9464)		(0.2810)	
TCFD	0.0212	0.0254*		0.0755***	
	(0.1261)	(0.0836)		(0.0000)	
ClimAct100lag1			-0.0455***		-0.0571***
			(0.0000)		(0.0000)
SBTlag1			-0.0039		0.0128
			(0.7358)		(0.3580)
TCFDlag1			0.0134		0.0594***
			(0.3143)		(0.0000)
Country FE	Yes	Yes	Yes	No	No
Sector \times Year FE	Yes	Yes	Yes	Yes	Yes
R-squared	0.2893	0.3063	0.3055	0.2155	0.2104
No. Observations	5,140	4,603	4,603	4,390	4,390

Hypothesis 4: Cheap talkers increase their emissions more

Regression equation:

$$\Delta GHG_{i,t} = \alpha + \beta_{CTI} CTI_{i,t} + \eta_i + \delta_i \times \nu_t + \epsilon_{i,t}.$$

	2010-2020		2017-2020			
	(I)	(II)	(III)	(IV)	(V)	(VI)
	Scope 1+2	Total	Scope 1+2	Total	Scope 1+2	Total
СТІ	-0.0984	-0.0166	0.0733	0.3197***	0.1348**	0.3230***
	(0.3773)	(0.8599)	(0.2816)	(0.0003)	(0.0115)	(0.0005)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Sector × Year FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared	0.0150	0.0481	0.0222	0.0721	0.0253	0.0725
No. Observations	11,237	11,237	4,690	4,690	4,690	4,690

Hypothesis 5: Increased negative news leads to more cheap talk

$$CTI_{i,t} = \alpha + \beta_{Controv} Controv_{i,t} + \beta_X X_{i,t} + \eta_i + \delta_i \times \nu_t + \epsilon_{i,t},$$

	2010-202	0	2017-2020		
	(I)	(II)	(III)	(IV)	
	Main with controls	Mandatory	Main with controls	Mandatory	
controversy	0.1510**	0.1538*	0.1908**	0.2144**	
	(0.0237)	(0.0637)	(0.0271)	(0.0281)	
Country FE	Yes	No	Yes	No	
Sector × Year FE	Yes	Yes	Yes	Yes	
R-squared	0.3130	0.2265	0.3208	0.2347	
No. Observations	6,954	6,719	3,056	2,955	

Hypothesis 6: High level of cheap talk leads to controversies

$$Controv_{i,t} = \alpha + \beta_{CTI} CTI_{i,t-1} + \beta_{OR} OppRisk_{i,t-1} + \beta_{GHG} GHG_{i,t} + \beta_M Material_i + \beta_X X_{i,t} + \eta_i + \delta_i \times \nu_t + \epsilon_{i,t},$$

	(I) Main with controls	(II) Mandatory	(III) Main with controls	(IV) Mandatory
CTIIag1	0.0058*	0.0062*	0.0110**	0.0122***
	(0.0799)	(0.0764)	(0.0110)	(0.0080)
ClimateSharelag1	0.0295**	0.0213	0.0230**	0.0180*
	(0.0446)	(0.1357)	(0.0461)	(0.0701)
R-squared No. Observations	0.3512 7,667	0.3316 7,425	0.3585 3,358	0.3420 3,256

Creating ClimateBERT

Measuring Firm-Level Cheap Talk and Sentiment

Conclusion

- Publicly supporting the TCFD is not at all or even positively associated with an increase in cheap talk.
- Active institutional ownership with targeted engagement strategies through Climate Action 100+ is associated with less cheap talk, more robust when the variable is lagged.
- SBTi does not lead to more decision-useful information in disclosures.
- Cheap talkers increase emissions more, particularly total emissions.
- Cheap talkers are more involved in controversies.

References

- Almazan, A., Banerji, S., and Motta, A. D. (2008). Attracting attention: Cheap managerial talk and costly market monitoring. The Journal of Finance, 63(3):1399–1436.
- Bakkensen, L. A. and Barrage, L. (2021). Going underwater? flood risk belief heterogeneity and coastal home price dynamics. *The Review of Financial Studies*.
- Baldauf, M., Garlappi, L., and Yannelis, C. (2020). Does climate change affect real estate prices? only if you believe in it. *The Review of Financial Studies*, 33(3):1256–1295.
- Bingler, J. A., Kraus, M., Leippold, M., and Webersinke, N. (2022). Cheap talk and cherry-picking: What climatebert has to say on corporate climate risk disclosures. *Finance Research Letters* (forthcoming).
- Bolton, P. and Kacperczyk, M. (2021a). Do investors care about carbon risk? *Journal of Financial Economics*, 142(2):517–549.
- Bolton, P. and Kacperczyk, M. T. (2021b). Carbon disclosure and the cost of capital. revised version of an earlier paper called "signaling through carbon disclosure". Technical report, Available at SSRN 3755613.
- Callaghan, M., Schleussner, C.-F., Nath, S., Lejeune, Q., Knutson, T. R., Reichstein, M., Hansen, G., Theokritoff, E., Andrijevic, M., Brecha, R. J., et al. (2021). Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. *Nature Climate Change*, pages 1–7.
- Cao, S. S., Jiang, W., Yang, B., and Zhang, A. L. (2021). How to talk when a machine is listening: Corporate disclosure in the age of ai. Working paper, Available at SSRN 3683802.

References (cont.)

- Chen, T., Dong, H., and Lin, C. (2020). Institutional shareholders and corporate social responsibility. *Journal of Financial Economics*, 135(2):483–504.
- Deng, M., Leippold, M., Wagner, A. F., and Wang, Q. (2022). Stock prices and the russia-ukraine war: Sanctions, energy and esg. *Swiss Finance Institute Research Paper*, (22-29).
- Diamond, D. W. (1985). Optimal release of information by firms. The Journal of Finance, 40(4):1071-1094.
- Engle, R., Giglio, S., Kelly, B., Lee, H., and Stroebel, J. (2020). Hedging climate change news. The Review of Financial Studies, 33(3):1184–1216.
- Fabrizio, K. R. and Kim, E.-H. (2019). Reluctant disclosure and transparency: Evidence from environmental disclosures. Organization Science, 30(6):1207–1231.
- Gibson, R., Glossner, S., Krueger, P., Matos, P., and Steffen, T. (2021). Do responsible investors invest responsibly? Working paper, Available at SSRN 3525530.
- Gostlow, G. (2022). Pricing physical climate risk in the cross-section of returns. Technical report, London School of Economics.
- Grewal, J., Riedl, E. J., and Serafeim, G. (2019). Market reaction to mandatory nonfinancial disclosure. *Management Science*, 65(7):3061–3084.
- Hershcovich, D., Webersinke, N., Kraus, M., Bingler, J. A., and Leippold, M. (2022). Towards climate awareness in NLP research.

Hong, H., Li, F. W., and Xu, J. (2019). Climate risks and market efficiency. Journal of Econometrics, 208(1):265-281.

References (cont.)

- Kim, D.-Y. and Kang, S.-W. (2018). Analysis of Recognition of Climate Changes using Word2Vec. International Journal of Pure and Applied Mathematics, 120(6):5793–5807.
- Kim, E.-H. and Lyon, T. P. (2015). Greenwash vs. brownwash: Exaggeration and undue modesty in corporate sustainability disclosure. *Organization Science*, 26(3):705–723.
- Kim, S. and Yoon, A. (2022). Analyzing active fund managers' commitment to esg: Evidence from the united nations principles for responsible investment. *Management Science*, 0(0):null.
- Kölbel, J. F., Leippold, M., Rillaerts, J., and Wang, Q. (2022). Ask bert: How regulatory disclosure of transition and physical climate risks affects the cds term structure. *Journal of Financial Econometrics* (forthcoming).
- Krueger, P., Sautner, Z., and Starks, L. T. (2020). The importance of climate risks for institutional investors. *The Review of Financial Studies*, 33(3):1067–1111.
- Marquis, C., Toffel, M. W., and Zhou, Y. (2016). Scrutiny, norms, and selective disclosure: A global study of greenwashing. Organization Science, 27(2):483–504.
- Monasterolo, I. and De Angelis, L. (2020). Blind to carbon risk? an analysis of stock market reaction to the paris agreement. *Ecological Economics*, 170:106571.
- Sautner, Z., van Lent, L., Vilkov, G., and Zhang, R. (2022). Firm-level climate change exposure. Technical report, Available at SSRN 3642508.
- Varini, F. S., Boyd-Graber, J., Ciaramita, M., and Leippold, M. (2020). Climatext: A dataset for climate change topic detection. In *Tackling Climate Change with Machine Learning (Climate Change AI) workshop at NeurIPS*.

References (cont.)

- Wang, G., Chillrud, L., and McKeown, K. (2021). Evidence based automatic fact-checking for climate change misinformation. International Workshop on Social Sensing on The International AAAI Conference on Web and Social Media.
- Webersinke, N., Kraus, M., Bingler, J., and Leippold, M. (2022). Climatebert: A pretrained language model for climate-related text. AAAI Symposium on Climate Change.