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The Identifiability Problem

e Cairns et al, 2009 NAAJ, “identifiability problem”. These constraints
“ensure the fitted cohort effect will fluctuate around 0 with no
discernible linear trend” and hence can be forecast.

@ Richards, Currie, Kleinow and Ritchie (2017). “constraints on the
cohort parameters perform a dual purpose

e acting as identifiability constraints
e imposing behaviour on cohort effects to make forecasting assumptions
valid”

The purpose of this paper is to show
@ there is no identifiability problem
o forecasting does not depend on the choice of constraints
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Age of death = rows, Year of death = columns, Year of birth = diagonals
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[[lustrative Data

ONS: UK males: Ages: 50-104; Years: 1971-2015.

ny = 55; n, = 45; nc =99; N = n¢n, = 2475.
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QOutline

Let p;j be the force of mortality at age / in year j.
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Let p;j be the force of mortality at age / in year j.
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QOutline

Let p;j be the force of mortality at age / in year j.

e The Age-Period (AP) model is
log pij = i + Kj.
e The Age-Period-Cohort (APC) model is
log pij = i + Kj +Ve(i )
where c(i,j) =n, — i +].
e The Age-Period-Cohort-lmprovement (APCI) model is
log pij = ai + Kj + Ye(ijy + Bily; — ¥)-

This is used by the CMI to parameterise its forecasting

spreadsheet.
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Generalized linear models (GLMs)
Let D = (d;;) and E = (e;;) and assume
dij ~ Peijhiy)

where, for example, in AP model log i j = a; + K;.
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Generalized linear models (GLMs)
Let D = (d;;) and E = (e;;) and assume
dij ~ Peijhiy)
where, for example, in AP model log i j = a; + K;.
In vector form
log (E(d)) =e+p=e+ X0
where X is the model matrix.

The AP, APC and APCI are all GLMs (overdispersion is ignored).
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|dentifiability and Rank
The Age-Period (AP) model is

|0g Wij = + Kj, 0 = (0/7 K/).
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|dentifiability and Rank
The Age-Period (AP) model is

|Og Wij = + Kj, 0 = (a’, K/).

Model matrix X is N x (ny + n,) and has rank n, +n, — 1

=> parameters are not uniquely estimable.

Identifiability problem
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Constraints in AP model

Standard constraint: Z/{j = 0

= parameters are uniquely estimable.
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Comments

o Estimates have a natural interpretation.
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Comments

o Estimates have a natural interpretation.
@ Forecasting is simple

o Forecast &
o Use model to forecast p; ;.

@ What could be simpler or more obvious?

BUT
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Random constraints in AP model

Let 0’ = (&, K').

nx+ny

Random constraint: Z ud; = 0
1

where U; ~ 1(0,1).

= parameters are uniquely estimable.
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Properties

Standard (centred) estimates: 0s = (&, RS)
Random estimates: Og = (&g, RR)".

Define

!/

A& = &s — G,
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Properties

Standard (centred) estimates: 05 = (&, R's)’

Random estimates: Og = (&g, RR)".

Define
A& = as — ar, Ak =Ks—Rp
@ Invariance: Xés = X@R, i.e., fitted p;; equal
o Ad =K1, , ie., &g and &g are
o parallel
e k apart
e Ak =—kl,, ie, Rs and Rg are
o parallel
e —k apart

o Here k = —13.8.
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Forecasting

Forecasting with ARIMA model, e.g., random walk with
drift, is invariant wrt choice of constraints.
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Age-Period-Cohort Model

The APC model is

log p1ij = i + Kj + V(i)

where c(i,j) =n, —i+].
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Constraints

Standard (Cairns et al, 2009):

DRSS IR,

where w, is the cohort index, w, = 1,..., n..
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Constraints

Standard (Cairns et al, 2009):

IED RS SIER

where w, is the cohort index, w, = 1,..., n..

Random: Let 8 = (a/, k', ~')'.

ZU1J0j22U2J9j22U3’j9j:O

where the v;;,i=1,2,3, j=1,...,n.+ n, + n, are U(0, 1).
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Delta
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Forecasting

o Forecasting with ARIMA model, e.g., random walk
with drift, is invariant wrt choice of constraints.
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Age-Period-Cohort-Improvement (APCI) Model

The model is

log pij = i + Kj+ ey + Bily; — V)

and forms the basis for the CMI'’s current forecasting spreadsheet.
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Age-Period-Cohort-Improvement (APCI) Model

The model is

log pij = i + Kj+ ey + Bily; — V)

and forms the basis for the CMI'’s current forecasting spreadsheet.

Model matrix X is N x (3n, + 2n, — 1) and rank 3n, +2n, — 6

and five (5) constraints are required to bring about identifiability.

22/28



Constraints

Standard:

Z"{j:ZVC:ZWCVC:ZWCZVCZZJKJ:O

where w, is the cohort index, w, =1,...,n..
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Constraints

Standard:
Y= e = Yoo = Sl = Ty =0
where w, is the cohort index, w, =1,...,n..

Random: Let 6 = (&/, Rl,V’aIBI)/-
Zui,jejzov i:17"'757.j:17"'72nX+ny+nC7

where the u; ;, are U4(0, 1).
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Differences

Aa = ds — dR, etc
D = difference operator

/
D(AG)

\

Slope = 0.0054

/

D(AK)

D(AY)

Slope = -0.0054

Slope = 0.0054

N

A8
Slope = -0.0054

—

0 30

60

90 120 150 180 210 240

Index

24/28



Forecasting

o Forecasting with ARIMA model is invariant wrt choice
of constraints provided d > 3 in ARIMA model.
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Smoothing

In AP and APC models smooth a.. Set

o= B.,a

where B, is a regression matrix of B-splines for age.

26/28



Smoothing

In AP and APC models smooth a.. Set

o= B.,a

where B, is a regression matrix of B-splines for age.

In APCI model additionally smooth 3. Set

3= B,b]|.

Use method of P-splines (Eilers & Marx, 1996).
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Conclusions

e Smoothing a (and B) makes no difference.
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Conclusions
e Smoothing a (and B) makes no difference.

o Fitted and forecast values are invariant wrt choice of constraints.

e Order of
e penalty for smoothing and

o differencing in ARIMA model
must be sufficiently large (see Currie (in preparation) for details).
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