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The Identifiability Problem

Cairns et al, 2009 NAAJ, “identifiability problem”. These constraints
“ensure the fitted cohort effect will fluctuate around 0 with no
discernible linear trend” and hence can be forecast.

Richards, Currie, Kleinow and Ritchie (2017). “constraints on the
cohort parameters perform a dual purpose

acting as identifiability constraints
imposing behaviour on cohort effects to make forecasting assumptions
valid”

The purpose of this paper is to show

there is no identifiability problem

forecasting does not depend on the choice of constraints
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Mortality data

Age

1

2

3

nx

Year

1 2 3 ny
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3
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3

3

nx nx + ny − 1

= nc

Deaths : D
Exposures : E
D,E : nx × ny

Age of death = rows, Year of death = columns, Year of birth = diagonals

Data: ONS: UK males: Ages: 50-104; Years: 1971-2015.
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Illustrative Data

ONS: UK males: Ages: 50-104; Years: 1971-2015.

nx = 55; ny = 45; nc = 99; N = nxny = 2475.
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Outline

Let µi ,j be the force of mortality at age i in year j .

The Age-Period (AP) model is

log µi ,j = αi + κj .

The Age-Period-Cohort (APC) model is

log µi ,j = αi + κj + γc(i ,j)

where c(i , j) = nx − i + j .

The Age-Period-Cohort-Improvement (APCI) model is

log µi ,j = αi + κj + γc(i ,j) + βi(yj − ȳ).

This is used by the CMI to parameterise its forecasting
spreadsheet.
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Generalized linear models (GLMs)

Let D = (di ,j) and E = (ei ,j) and assume

di ,j ∼ P(ei ,jµi ,j)

where, for example, in AP model log µi ,j = αi + κj .

In vector form

log (E(d)) = e + µ = e + Xθ

where X is the model matrix.

The AP, APC and APCI are all GLMs (overdispersion is ignored).

6 / 28



6/28

Generalized linear models (GLMs)

Let D = (di ,j) and E = (ei ,j) and assume

di ,j ∼ P(ei ,jµi ,j)

where, for example, in AP model log µi ,j = αi + κj .

In vector form

log (E(d)) = e + µ = e + Xθ

where X is the model matrix.

The AP, APC and APCI are all GLMs (overdispersion is ignored).

6 / 28



6/28

Generalized linear models (GLMs)

Let D = (di ,j) and E = (ei ,j) and assume

di ,j ∼ P(ei ,jµi ,j)

where, for example, in AP model log µi ,j = αi + κj .

In vector form

log (E(d)) = e + µ = e + Xθ

where X is the model matrix.

The AP, APC and APCI are all GLMs (overdispersion is ignored).

6 / 28



7/28

Identifiability and Rank

The Age-Period (AP) model is

log µi ,j = αi + κj , θ′ = (α′,κ′).

Model matrix X is N × (nx + ny ) and has rank nx + ny − 1

⇒ parameters are not uniquely estimable.

Identifiability problem

7 / 28



7/28

Identifiability and Rank

The Age-Period (AP) model is

log µi ,j = αi + κj , θ′ = (α′,κ′).

Model matrix X is N × (nx + ny ) and has rank nx + ny − 1

⇒ parameters are not uniquely estimable.

Identifiability problem

7 / 28



8/28

Constraints in AP model

Standard constraint:
∑

κj = 0

⇒ parameters are uniquely estimable.
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Comments

Estimates have a natural interpretation.

Forecasting is simple

Forecast κ̂
Use model to forecast µi,j .

What could be simpler or more obvious?

BUT

11 / 28



11/28

Comments

Estimates have a natural interpretation.

Forecasting is simple

Forecast κ̂
Use model to forecast µi,j .

What could be simpler or more obvious?

BUT

11 / 28



11/28

Comments

Estimates have a natural interpretation.

Forecasting is simple

Forecast κ̂
Use model to forecast µi,j .

What could be simpler or more obvious?

BUT

11 / 28



11/28

Comments

Estimates have a natural interpretation.

Forecasting is simple

Forecast κ̂
Use model to forecast µi,j .

What could be simpler or more obvious?

BUT

11 / 28



12/28

Random constraints in AP model

Let θ′ = (α′,κ′)′.

Random constraint:

nx+ny∑
1

uiθi = 0

where Ui ∼ U(0, 1).

⇒ parameters are uniquely estimable.
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Standard: α̂S , Random: α̂R
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Standard: κ̂S , Random: κ̂R
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Properties

Standard (centred) estimates: θ̂S = (α̂′
S , κ̂

′
S)′

Random estimates: θ̂R = (α̂′
R , κ̂

′
R)′.

Define

∆α̂ = α̂S − α̂R , ∆κ̂ = κ̂S − κ̂R

Invariance: X θ̂S = X θ̂R , i.e., fitted µi ,j equal

∆α̂ = k1nx , i.e., α̂S and α̂R are

parallel
k apart

∆κ̂ = −k1ny , i.e., κ̂S and κ̂R are

parallel
−k apart

Here k = −13.8.
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∆α̂ = α̂S − α̂R , etc
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∆κ̂= 13.8
 

∆α̂= −13.8
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Forecasting

Forecasting with ARIMA model, e.g., random walk with
drift, is invariant wrt choice of constraints.
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Age-Period-Cohort Model

The APC model is

log µi ,j = αi + κj + γc(i ,j)

where c(i , j) = nx − i + j .

18 / 28



19/28

Constraints

Standard (Cairns et al, 2009):∑
κj =

∑
γc =

∑
wcγc = 0

where wc is the cohort index, wc = 1, . . . , nc .

Random: Let θ = (α′,κ′,γ ′)′.∑
u1,jθj =

∑
u2,jθj =

∑
u3,jθj = 0

where the ui ,j , i = 1, 2, 3, j = 1, . . . , nx + ny + nc , are U(0, 1).
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∆α̂ = α̂S − α̂R , etc

Index
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∆γ̂ : slope = 0.024
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Forecasting

Forecasting with ARIMA model, e.g., random walk
with drift, is invariant wrt choice of constraints.
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Age-Period-Cohort-Improvement (APCI) Model

The model is

log µi ,j = αi + κj + γc(i ,j) + βi(yj − ȳ)

and forms the basis for the CMI’s current forecasting spreadsheet.

Model matrix X is N × (3nx + 2ny − 1) and rank 3nx + 2ny − 6

and five (5) constraints are required to bring about identifiability.
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Constraints

Standard:∑
κj =

∑
γc =

∑
wcγc =

∑
w 2
c γc =

∑
jκj = 0

where wc is the cohort index, wc = 1, . . . , nc .

Random: Let θ = (α′,κ′,γ ′,β′)′.∑
ui ,jθj = 0, i = 1, . . . , 5, j = 1, . . . , 2nx + ny + nc ,

where the ui ,j , are U(0, 1).
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∆α̂ = α̂S − α̂R , etc
D = difference operator

Index
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Forecasting

Forecasting with ARIMA model is invariant wrt choice
of constraints provided d ≥ 3 in ARIMA model.
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Smoothing

In AP and APC models smooth α. Set

α = Baa

where Ba is a regression matrix of B-splines for age.

In APCI model additionally smooth β. Set

β = Bab .

Use method of P-splines (Eilers & Marx, 1996).
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Conclusions

Smoothing α (and β) makes no difference.

Fitted and forecast values are invariant wrt choice of constraints.

Order of

penalty for smoothing and

differencing in ARIMA model

must be sufficiently large (see Currie (in preparation) for details).
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