

Mortality modelling and forecasting in the uncertain world

Roshan Tajapra, SCOR Patrick Cheung, RGA 8 September 2023

Longevity 18 London

The Data Driven Approach

The CMI model What is it?

Model, considered gold standard

2-for-1:

Set current mortality level

Project initial improvement to LTR

Age-Period Cohort

3 | Mortality modelling and forecasting in the uncertain world

Note: Graphs and life expectancies generated under core calibration of CMI_2021_M [1.5%], using S3PMA tables with a calculation date of 1-Jan-2024

The CMI model Where is the uncertainty?

Theory:

- Trends in near future will follow recent past
- Trends in longer term uncertain
- Core parameters for everything <u>except</u> LTR
 - LTR set by user due to its uncertainty
- Most BPA insurers / reinsurers set LTR between 1% and 2% ⁽¹⁾
- LTR sensitivities show +/- 1% life expectancy change at age 75

	Life expectancy differences from core calibration, males ⁽²⁾		
	Age 65	Age 75	
LTR = 1.0%	-1.4%	-0.9%	
LTR = 1.5%	-	-	
LTR = 2%	+1.5%	+1.0%	

The CMI model How does the core model handle the pandemic?

- 2020-21 excluded from core calibration
- 25% weight applied to 2022
 - CMI state 2022 somewhat indicative of future
- Proposed 50% weight for 2023, 75% for 2024⁽¹⁾
 - Getting back to "Normal" from 2025
 - What does this mean?

"Taken together, this suggests that... mortality in 2022 may be indicative of future mortality to some extent. However, we note there is still considerable uncertainty."

CMI Working Paper 168: CMI_2022 Consultation

Table 2.1: Proposal from Working Paper 168

	<i>w</i> ₂₀₂₂	<i>w</i> ₂₀₂₃	<i>w</i> ₂₀₂₄	<i>w</i> ₂₀₂₅	W ₂₀₂₆
CMI_2022	25%	_	-	_	-
CMI_2023	25%	50%	-	_	-
CMI_2024	25%	50%	75%	_	-
СМІ_2025	25%	50%	75%	100%	-
СМІ_2026	25%	50%	75%	100%	100%

CMI_2023 model predictions We've made an estimate of CMI_2023

- Use CMI method to generate 2023 population
- Use 2023 weekly deaths up to week 33

Assume future 2023 weekly deaths equal 2022 weekly deaths

What happens under the BAU update of CMI model?

Cumulative standardised mortality rate compared to 2019

CMI 2023 Predictions What happens to base and trend?

Increase in base mortality...

Base and trend are entangled in the core calibration of the CMI model

S3PMA tables

and decrease in future trend!

7

CMI_2023 & COVID-19 Where is the uncertainty?

- Weight parameter sets current mortality level <u>AND</u> future expectations of improvement
 - Both are highly uncertain!

 \bigoplus

- Big change in life expectancies
 - Range of 7% vs 2% for LTR!
- Should it be a user input?

	Life expectancy differences from core calibration, males ⁽¹⁾		
	Age 65	Age 75	
$W_{2022} = 0\%$ $W_{2023} = 0\%$	+4.9%	+6.0%	
$W_{2022} = 25\%$ $W_{2023} = 50\%$	-	-	
W ₂₀₂₂ = 100% W ₂₀₂₃ = 100%	-0.7%	-1.0%	

Projected improvement comparison CMI_2021 vs CMI_2023

CMI_2021 Males

CMI_2023_Estimate Males

9 Mortality modelling and forecasting in the uncertain world

CMI_2023 Is dis-improvement reasonable?

- Can't ignore pandemic! We have a new cause of death.
- By using 2022-23 data, the CMI model accounts for this in trend.

Watch out for double counting!

- More natural to think of COVID-19 as step-change in base mortality in 2020?
- Core calibration not suitable if modelling COVID-19 as step-change.
- R Do we need a different approach?

The Driver-Based Approach

Driver-based Approach

Start with recent excess mortality

2 What is driving the excess mortality?

3 How will the drivers evolve over time?

Views expressed relative to pre-pandemic expectations

4

Drivers of Excess Mortality

A range of considerations

Medical, demographic, health, Epidemiological, etc

COVID Evolution

Evolution of Drivers over Time

Key considerations:

- Are the drivers temporary or permanent?
- Will these wear off over time?
- Will 'new' factors also emerge?

A fair degree of actuarial judgment

RGA

Key Driver: COVID – 19

- Significant and persistent excess from the pandemic shock
- Thankfully, recent months have seen significant drop in the number of cases and covid-related deaths

SARS-CoV-2 – Future Outlook

A complex formula?

Possible future outcomes: Endemic state?

Key Driver: Non-Covid Deaths

Ambulance Response times

Source: NHS England, Ambulance Quality Indicators

RGA

National Health Service (NHS) – Challenging times

A&E Admission times – Decision to proceed to admission, transfer or discharge

- Target for A&E cases: 95% of A&E cases must be handled within a 4hour window
- Target missed since late 2015

Source: Statistics » A&E Attendances and Emergency Admissions (england.nhs.uk)

RGA Mortality modelling and forecasting in the uncertain world

Healthcare Pressures – Future outlook

Not a new issue, but issue has worsened

- The pressures on the healthcare system is not a new issue
- The austerity period (in the 2010 to 2019) is suspiciously having a long-term impact
- The pandemic has been certainly worsened the issue

Will it recover?

- NHS Funding is the key
- Organisational reform
- Greater role by the private health sector

mRNA technology

Some therapeutics gave been accelerated by the pandemic

mRNA vaccines have been researched for over 30 years

The COVID 19 pandemic accelerated the development of therapeutics approved for human use

There have already been subsequent breakthroughs in developing improved influenza vaccines

mRNA-based cancer therapeutics are the next frontier

Source: Shuqin Xu, Kunpeng Yang, Rose Li, and Lu Zhang - Xu, S.; Yang, K.; Li, R.; Zhang, L. mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. Int. J. Mol. Sci. 2020, 21, 6582. https://doi.org/10.3390/ijms21186582, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=106937729

Rapid advances

Some therapeutics are progressing quickly despite the pandemic

Cancer diagnostics

Non-invasive detection and profiling of tumors

Weight-loss drugs

Recently shown to benefit heart health

Alzheimer's progress

Donanemab shown to slow the progression of the disease

A loading over Pre-pandemic Mortality Possible outcomes

- A range of possible outcomes
- Some possible paths will converge to pre-pandemic mortality sooner, some never at all

Conclusions

Conclusion Mortality modelling and forecasting in the uncertain world

Uncertainty in data driven approach no longer constrained to LTR

Core parameterization not necessarily default view

Need a combi approach in the uncertain world

24 | Mortality modelling and forecasting in the uncertain world

Thank You

Roshan Tajapra, SCOR Patrick Cheung, RGA 8 September 2023

Questions? Comments?

