Modeling multi-state health transitions in China: A generalized linear model with time trends

Katja Hanewald, Han Li and Adam Shao

Australia-China Population Ageing Research Hub ARC Centre of Excellence in Population Ageing Research (CEPAR) UNSW Sydney

13th International Longevity Risk and Capital Markets Solutions Conference

21-22 September 2017

Australia-China Population Ageing Research Hub

- Website: http://www.cepar.edu.au/research/ australia-china-population-ageing-research-hub
- Based in the ARC Centre of Excellence in Population Ageing Research (CEPAR) at UNSW Sydney; funded by UNSW Sydney
- Research areas focusing on China:
 - Aging trends
 - 2 Long-term care services and insurance
 - Mature labor force participation
 - Retirement incomes, financial products and housing
- Team:
 - Director: Prof John Piggott
 - Scientific Director: Prof Hanming Fang (University of Pennsylvania)
 - 4 full-time research fellows, 3 PhD students

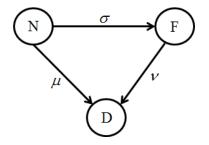
Motivation

- Rapid population aging in China
- In 2015, 1 in 5 older persons (aged 65+) **globally** lived in China, while in 2050, 1 in 4 elderly (over 370 million people) will be Chinese (United Nations, 2015).
- China's old age dependency ratio was 15% in 2015, will be close to 50% by mid-century (United Nations, 2015)
- Need for retirement planning, long-term care, and financial services for the elderly in China

Motivation

- Traditional family-based care under threat
 - Demographic changes, weakening of traditional values, greater geographic mobility, improved gender equality (see, e.g., Zhu, 2015; Lu *et al.*, 2015).
- Current social security programs do not cover full nursing home cost; do not fund community-based services (Yang *et al.*, 2013)
- Need for social security programs and/or private market solutions (e.g. LTC insurance, specialized home equity release products)
- Need to understand and model health transitions among Chinese elderly

Our paper


- We develop a generalized linear model (GLM) to estimate health transition intensities in a three-state Markov model
 - Builds on previous models developed by Renshaw and Haberman (1995) for UK data and Fong *et al.* (2015) for US data
 - Our model includes age effects, time trends and age-time interactions
- Provide first evidence on health transitions of Chinese elderly

5/19

21-22 September 2017

Three-state time-inhomogeneous Markov process

- State N: non-disabled
- State F: functionally disabled
- State D: dead (absorbing)

Existing models for functional disability

• Renshaw and Haberman (1995):

$$\log(\sigma_x) = \beta_0 + \beta_1 x + \beta_2 x^2 \tag{1}$$

$$\log(\varphi_{x,z}) = \beta_0 + \beta_1 x + \beta_2 z + \beta_3 \sqrt{z} + \beta_4 x z + \beta_5 x \sqrt{z}$$
(2)

$$\log(\nu_{x,z}) = \beta_0 + \beta_1 x + \beta_2 z + \beta_3 (z - z_1)_+ + \beta_4 (z - z_2)_+$$
(3)

Data: UK Male permanent health insurance data during 1975–1978.

• Fong *et al.* (2015):

$$\eta_x = \sum_{s=0}^k \beta_s x^s \tag{4}$$

where $\eta_x = \log(\mu_x)$, $\log(\sigma_x)$, $\log(\varphi_x)$, or $\log(\nu_x)$. Data: Health and retirement Study (HRS), 1998–2010.

• Li *et al.* (2017):

$$\ln(\lambda_{skx}(t)) = \beta_s + \gamma_s^{female} x_t + \gamma_x^{female} F + \phi_s t + \alpha_s \varphi(t)$$
(5)

where *t* is the linear trend and $\varphi(t)$ is the latent factor or frailty. Data: Health and retirement Study (HRS), 1998–2010.

Katja Hanewald (CEPAR)

Stochastic mortality models

• Lee and Carter (1992):

$$\log(m_{x,t}) = a_x + b_x \kappa_t,\tag{6}$$

where a_x and b_x represent age effects and κ_t represents time effect. • Cairns *et al.* (2006):

$$\operatorname{logit}(q_{x,t}) = \kappa_t^1 + \kappa_t^2 (x - \bar{x}), \tag{7}$$

where κ_t^1 and κ_t^2 are time effects and are assumed to follow a bivariate random walk with drift process.

• Renshaw and Haberman (1996):

$$\log(\mu_{x,t}) = \beta_0 + \sum_{j=1}^s \beta_j L_j(x') + \sum_{i=1}^r \alpha_i t'^i + \sum_{i=1}^r \sum_{j=1}^s \gamma_{ij} L_j(x') t'^i, \quad (8)$$

where L_j is the j^{th} Legendre orthogonal polynomial.

Katja Hanewald (CEPAR)

A Generalized Linear Model

Link function: Adopt a log link function $g(\cdot)$:

$$g(\alpha_{x,t}) = \ln(\alpha_{x,t}) = \eta_{x,t},\tag{9}$$

for $\eta_{x,t} = \log(\mu_{x,t})$, $\log(\sigma_{x,t})$ or $\log(\nu_{x,t})$.

Linear predictor: Introduce a time trend and age-time interactions:

$$\eta_{x,t} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 t x + \beta_5 t x^2 \tag{10}$$

Probability distribution: Assume that the number of health transitions follows an independently distributed Poisson distribution.

Estimation and model selection: MLE, compare all possible model variants using BIC.

Our contribution

- We **combine** good model features and estimation techniques from multi-state models and mortality models.
- We allow for greater flexibility in the model and explore different functional forms.
- We **incorporate** a time trend in the transition intensities.
- We **compare** the distinct demographic differences between males and females in urban and rural areas in China.

Chinese Longitudinal Healthy Longevity Survey (CLHLS)

- Conducted by the Center for Healthy Aging and Family Studies (CHAFS) at the National School of Development at Peking University
- 22 of China's 31 provincial regions
- 6 waves: 1998, 2000, 2002, 2005, 2008, 2011
- Largest longitudinal survey of the "oldest old" (aged 80+) internationally
- Information on health status and quality of life of the elderly

Our sample

- Unbalanced panel, all individuals with 2+ consecutive observations
- Health transitions between 2 waves: 5 pairwise observations
- Focus on older ages 65–105
- Separate data for males/females and urban/rural
- We define the state "F" as having difficulties to perform 2+ Activities of Daily Living (ADL): bathing, dressing, eating, toileting, continence and transferring in and out of bed.

Sample size

	$\sigma: N \to F$			$\mu: N \to D$				$\nu \colon F \to D$				
	Ma	les	Fem	ales	Ma	les	Fem	ales	Ma	les	Fem	ales
Time	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural
1998 - 00	99	153	175	292	277	604	362	793	141	240	284	649
2000 - 02	191	131	376	256	572	416	642	520	202	143	498	350
2002 - 05	168	134	257	278	720	1,020	860	1,333	248	275	608	728
2005 - 08	105	109	193	207	686	1,013	824	1,324	196	180	463	537
2008 - 11	214	229	306	443	620	1,229	757	1,682	145	192	368	642
Total	777	756	1,307	1,476	2,875	4,282	3,445	5,652	932	1,030	2,221	2,906

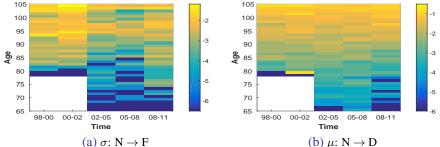
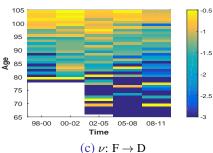

Table: Number of transition counts.

Table: Number of exposure years.


		Sta	te N	State F					
	Males		Females		Males		Females		
Time	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural	Total
1998 - 2000	1,763	2937	2,189	3,971	369	519	797	1,537	14,082
2000 - 2002	3,240	1,997	3,652	2,568	571	347	1,258	819	14,451
2002 - 2005	5,570	7,516	6,474	8,801	793	742	1,661	1,926	33,482
2005 - 2008	5,215	7,552	5,917	9,182	614	544	1,385	1,573	31,980
2008 - 2011	4,946	8,627	5,609	10,249	662	762	1,379	1,979	34,211
Total	20,733	28,628	23,840	34,770	3,008	2,914	6,480	7,834	128,206
-	1				1			C	000

Plots of crude transition rates: urban females

Katja Hanewald (CEPAR)

14/19 21-22 September 2017

Optimal model: parameter estimates

		<i>σ</i> : N	\rightarrow F		$\mu: N \rightarrow D$				
	Males		Females		Males		Females		
Coeffiecient	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural	
β_0	-5.376***	-5.719***	-6.346***	-5.969***	-4.237***	-4.292***	-4.684***	-4.414***	
β_1	0.122***	0.127***	0.217***	0.169***	0.119***	0.140***	0.137***	0.123***	
$\beta_2(\times 10^2)$	-0.111***	-0.09**	-0.259***	-0.178***	-0.808***	-0.132***	-0.110***	-0.090***	
β_3									
$\beta_4(\times 10^2)$			-0.154***	-0.158***					
$\beta_5(\times 10^5)$		-5.125***							
BIC	832.77	824.56	977.70	1107.56	943.25	1071.52	940.41	1023.65	
		ν: F	$\rightarrow D$						
	Males Females								
Coeffiecient	Urban	Rural	Urban	Rural					
β_0	-2.267***	-2.186***	-2.619***	-2.618***	1				
β_1	0.046***	0.047***	0.053***	0.053***					
$\beta_2(\times 10^2)$									
β_3	-0.027***	-0.029***	-0.026***						
$\beta_4(\times 10^2)$									
$\beta_5(\times 10^5)$				-1.622***					
BIC	691.81	715.48	754.76	746.89					

Note: Linear predictor: $\eta_{x,t} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 t x + \beta_5 t x^2$. *p < 0.05;**p < 0.01.

Example: urban females

•
$$\log(\sigma_x) = -6.346 + 0.217x - 0.00259x^2 - 0.00154tx$$
 (disability rate)

•
$$\log(\mu_x) = -4.684 + 0.137x - 0.00110x^2$$
 (mortality rate from "N")

•
$$\log(\nu_{x,t}) = -2.619 + 0.053x - 0.026t$$
 (mortality rate from "F")

Life expectancy and healthy life expectancy

- Use optimal models to compute LEs at age 65 and 75 conditional on initial health status and HLEs
- Results agree with Liu et al. (2009); Luo et al. (2016); Guo (2017)

Table: Healthy life expectancy at age 65 and 75.

	Ma	ale	Female			
Year	Urban	Urban Rural		Rural		
	Healt	hy life ex	pectancy at 65			
1998	15.16	15.03	16.85	16.26		
2011	15.16	15.17	17.36	16.68		
2020	15.16	15.25	17.66	16.93		
	Healt	hy life ex	pectancy	at 75		
1998	8.96	8.58	9.64	9.56		
2011	8.96	8.76	10.21	10.04		
2020	8.96	8.86	10.54	10.31		

Conclusion

- **Summary:** A new flexible approach to modeling health transitions at higher ages based on the GLM framework.
 - Model allows for time trends and age-time interactions
 - Results for Chinese aged 65-105 (males/females, urban/rural)

• Results:

- Time trends and age-time interactions are important for modeling disability rates and disabled mortality rates
- ► Estimated LEs and HLEs: persistent rural/urban health inequalities

• Potential applications of the model:

- Estimate the demand for LTC services and insurance
- Analyze other health conditions (chronic diseases, critical illnesses)

Thank you!

Any questions, comments or suggestions?

Contact email: k.hanewald@unsw.edu.au

References

- Cairns, A. J., Blake, D., and Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance, 73(4), 687–718.
- Fong, J. H., Shao, A. W., and Sherris, M. (2015). Multistate actuarial models of functional disability. North American Actuarial Journal, 19(1), 41–59.
- Guo, W. (2017). The Changes of Disability-Free Life Expectancy and Inter-Generation Support for the Elderly in China: 2005–2010. In T. Samanta, editor, Cross-Cultural and Cross-Disciplinary Perspectives in Social Gerontology, pages 221–243. Springer.
- Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting us mortality. Journal of the American statistical association, 87(419), 659-671.
- Li, Z., Shao, A. W., and Sherris, M. (2017). The impact of systematic trend and uncertainty on mortality and disability in a multi-state latent factor model for transition rates. North American Actuarial Journal. Forthcoming.
- Liu, J., Chen, G., Song, X., Chi, I., and Zheng, X. (2009). Trends in disability-free life expectancy among Chinese older adults. Journal of Aging and Health, 21(2), 266–285.
- Lu, B., Liu, X., and Piggott, J. (2015). Informal Long Term Care in China and Population Ageing: Evidence and Policy Implications. Population Review, 54(2).
- Luo, H., Wong, G. H., Lum, T. Y., Luo, M., Gong, C. H., and Kendig, H. (2016). Health expectancies in adults aged 50 years or older in China. Journal of Aging and Health, 28(5), 758–774.
- Renshaw, A. and Haberman, S. (1995). On the graduations associated with a multiple state model for permanent health insurance. *Insurance: Mathematics and Economics*, 17(1), 1–17.
- United Nations (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. United Nations Department of Economic and Social Affairs and Population Division.
- Yang, H., Browning, C., and Thomas, S. (2013). Challenges in the provision of community aged care in China. Family Medicine and Community Health, 1(2), 32–42.
- Zhu, H. (2015). Unmet needs in long-term care and their associated factors among the oldest old in China. BMC Geriatrics, 15(1), 1.