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Plan

• Intro + model

• Recalibration risk – introduction

• Robustness questions – index hedging

• Are some hedging instruments more robust than

others?

• Static Delta and Nuga hedging

• Discussion
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Focus of this talk
Index-based hedges

• Customised longevity swaps only available to very large pension

plans

• Index-based hedges

– smaller schemes

– better value for money for large plans ???

– Quantity of hedging instrument
Hedge effectiveness
Price
How confident are we in these quantities? ⇒ ROBUSTNESS
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Simple example

• Static value hedge: t = 0 −→ T

• ak(T, x) = population k annuity value at T

• Liability value L(T ) = a2(T, 65)

• Hedging instrument: deferred longevity swap

H(T ) = ak(T, x)− âk
fxd(0, T, x)

âfxd
k (0, T, x) = value at T of swap fixed leg

• k = 2 (CMI) ⇒ CUSTOMISED hedge

• k = 1 (E&W) ⇒ INDEX hedge
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Hedging: basic idea

• L = liability value

• H = value of hedging instrument

• Objective: minimise V ar(deficit) = V ar(L + hH)

⇒ hedge ratio, h = −Cov(L,H)

V ar(H)
= −ρ

S.D.(L)

S.D.(H)

Hedge effectiveness = 1− V ar(L + hH)

V ar(L)
= ρ2

More general: multiple assets

⇒ minimise V ar(L + h1H1 + . . . + hnHn)
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Simple example: APC model (Cairns et al., 2011a)

mk(t, x) = population k death rate

log mk(t, x) = β(k)(x) + κ(k)(t) + γ(k)(t− x)

β(1)(x), β(2)(x) population 1 and 2 age effects

κ(1)(t), κ(2)(t) period effects; mean reverting spread

γ(1)(c), γ(2)(c) cohort effects

Key: νκ = κ(1)(t), κ(2)(t) long term trend
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Realism: valuation model 6= simulation model

• (Re-)calibration using data up to T ⇒ realistic!

• Valuers just observe historical mortality plus

one future sample path of mortality from 0 to T

⇒ do not know the “true” simulation/true model

• Using true model⇒ too optimistic (??) c.f. Black-Scholes
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Recalibration risk – example (random walk)
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• You will recalibrate at T

• Recalibration depends on as yet unknown experience from 0 to T

• Recalibration depends on length of lookback window
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Hedge Effectiveness: (Cairns et al., 2011b; Longevity 6)

Key conclusions: index-based hedging

• Recalibration⇒ risk↗
• BUT hedge effectiveness also↗

WHY?

Additional trend risk is common to both populations.

ak(T, x) ≈ f (β
(k)
[x] , κ

(k)
T , γ

(k)
T−x+1, νκ)
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Preliminary conclusion

Correlation and hedge effectiveness are not robust

relative to the treatment of recalibration risk.

What about the hedge ratio? Price?
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Robustness

How robust are estimates of:

• Optimal hedge ratios h1, . . . , hn

• Hedge effectiveness

• Initial hedge instrument prices π(H1), . . . , π(Hn)

... relative to ...
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Robustness

How robust are key quantities relative to

• Treatment of parameter risk

• Treatment of population basis risk

• Valuation model: recalibration risk (Cairns et al., L6)

• Poisson risk

• Use of latest EW data

• Simulation model + calibration
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Modelling Variants

• PC: Full parameter certainty (PC);

Valuation Model NOT recalibrated in 2015

• PC-R: As full PC

Except: Valuation Model recalibrated in 2015

• PU: Full parameter uncertainty with recalibration

• PU-Poi: Full PU with recalibration + Poisson risk
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Hedging options

• Recall: Liability, L = a2(T, 65) (CMI)

• Hedging instrument (ref England & Wales):

– H = a1(T, x)− afxd
1 (0, T, x)

OR

– q-Forward maturing at T

H = q(T, x)− qF (0, T, x)
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Robustness of Hedge Ratios
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Robustness relative to recalibration window, W
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Robustness relative to recalibration window, W

Longevity swaps are more robust:

• Liability, L, and longevity swap, H , depend on

– κ
(1)
T and νκ

– BUT in differing proportions⇒ single H not robust

• Maturing q-Forward depends on κ
(1)
T only

⇒ even less robust

• Possible market solution:

(0, T + U, x) q-Forward, cash settled at T
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Robustness relative to recalibration window, W
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Robustness relative to recalibration window, W

• If we know W , then νκ linear in κ
(1)
T

⇒ one hedging instrument sufficient

• If W is not known

or, νκ determined by other methods

⇒ two hedging instruments are required

⇒ Delta and “Nuga” hedging
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Delta and Nuga Hedging

Recall: ak(T, x) ≈ f(β
(k)
[x] , κ

(k)
T , γ

(k)
T−x+1, νκ)

Liability: L = a2(T, x).

Hedge instruments: H1 = a1(T, x1) → h1 units

H2 = a1(T, x2) → h2 units
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Delta and Nuga hedging⇒ require

Deltas: α
∂L

∂κ(2) = −h1
∂H1

∂κ(1) − h2
∂H2

∂κ(1)

and Nugas:
∂L

∂νκ
= −h1

∂H1

∂νκ
− h2

∂H2

∂νκ

where α = Cov(κ(1)
T , κ

(2)
T )/V ar(κ(1)

T ).

Concept:

same idea as Vega hedging in equity derivatives

– hedging against changes in a parameter that is supposed to be constant.
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Numerical example: L = a2(T, 65), T = 10

H1 = a1(T, 65) H2 = a1(T, 85)

Strategy h1 h2 V ar(Deficit) Hedge Eff.

W = 20

A 0 0 0.3481 0

B -0.8775 0 0.03202 0.9080 (1)

C -0.8291 0 0.03298 0.9052 (3)

D -1.3376 0.7199 0.03209 0.9078 (2)

W = 35

A 0 0 0.2233 0

B -0.8775 0 0.03353 0.8498 (3)

C -0.8291 0 0.03289 0.8527 (1)

D -1.3376 0.7199 0.03298 0.8523 (2)
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Numerical example: discussion

• Annuity-Annuity hedging⇒ net Nuga-risk is modest

⇒ Delta-Nuga hedging lessens the small gap in hedge

effectiveness

• Delta-Nuga hedging will have a greater impact if

– νκ subject to additional risk

– H1 is relatively less sensitive to νκ

e.g. H1 is a T -year q-Forward

H2 is a (T + U)-year q-Forward settled at T
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q-F(T, 64) q-F(T + T , 74)

Strategy h1 h2 V ar(Deficit) Hedge Eff.

W = 20

A 0 0 0.3481 0

B 500.7 0 0.03435 0.9013 (1)

C 389.0 0 0.04996 0.8565 (3)

D -279.6 256.4 0.03797 0.8909 (2)

W = 35

A 0 0 0.2233 0

B 500.7 0 0.04953 0.7782 (3)

C 389.0 0 0.03392 0.8481 (1)

D -279.6 256.4 0.03493 0.8436 (2)
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Robustness relative to other factors

Results are robust relative to:

• inclusion of parameter uncertainty in β
(k)
x , κ

(k)
t , γ

(k)
c

• pension plan’s own small-population Poisson risk

• index population: EW-size Poisson risk, maybe smaller

• CMI data up to 2005 + EW data up to 2005

versus

CMI data up to 2005 + EW data up to 2008
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Conclusions

Robust hedging requires inclusion of

• Recalibration risk (Nuga)

• Careful treatment of recalibration window

• Long-dated hedging instruments to handle Nuga risk

Results appear to be robust relative to

• Poisson risk

• Parameter uncertainty (other than recalibration risk)

• Treatment of latest data

E: A.Cairns@ma.hw.ac.uk

W: www.ma.hw.ac.uk/∼andrewc


