Projecting mortality rates using a Markov chain

Jaap Spreeuw

Joint work with:

Iqbal Owadally and Muhammad Kashif

Bayes Business School (formerly Cass), City, University of London

Longevity 18 Conference, London, UK, September 2023

Outline of contents

- □ Worked example as in Norberg (2013)
- □ Aim of this paper
- □ Model
- Calibration to data
- □ Forecasting
- □ Applications in life insurance and pensions
- □ Avenues for future research

Worked example as in Norberg (2013)

- Stochastic mortality changes modelled through time-homogeneous Markov chain
- □ Three causes of death:
 - First two causes are in force at all ages until disappearing independently at random times which are exponentially distributed.
 - Third cause remains in force, alternating between low and high mortality.

Aim of this paper

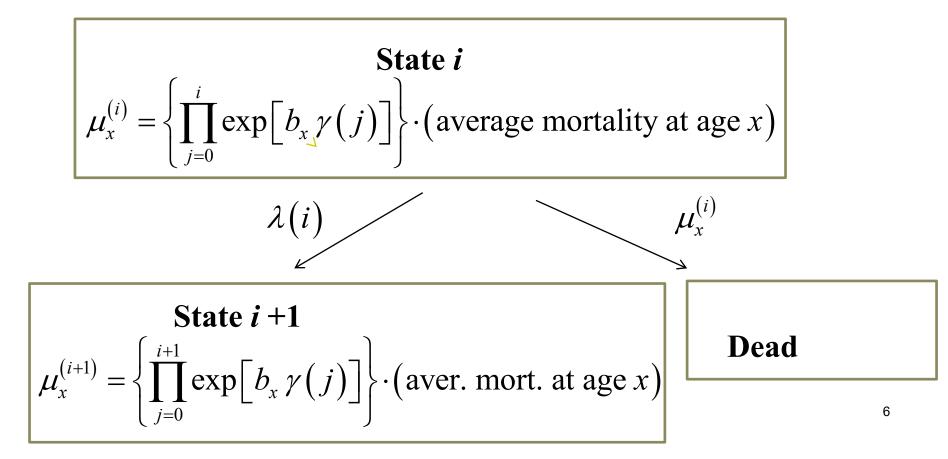
- Calibrate suitable time-homogeneous Markov chain model of stochastic mortality to real data.
- □ Challenges:
 - Cause-specific mortality: possible correlation between causes of death.
 - Mortality in aggregate terms: usually only number of deaths and risk exposure observed.

Model

- □ A Markov chain with N + 1 "Alive" states and one "Dead" state.
- □ For individual aged *x*, transition of one "Alive" state *i* to next one, *i*+1, rate λ(*i*), leads to change in mortality of exp[b_x γ(*i*+1)].
 □ From last "Alive" state only transition to
- From last "Alive" state only transition to death state possible.

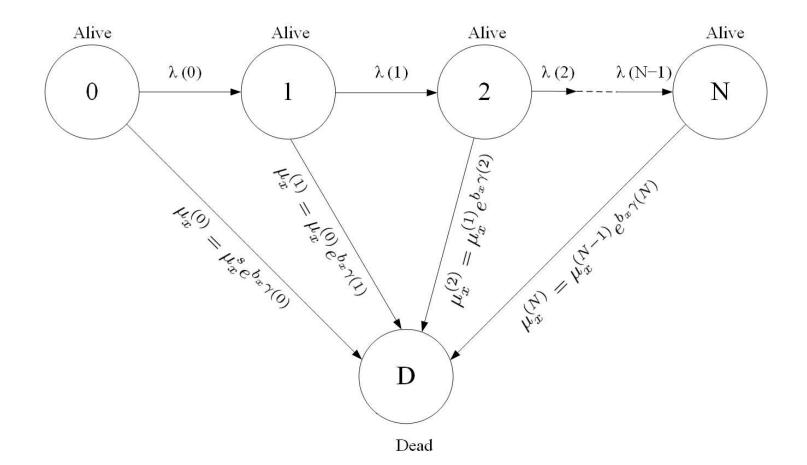
Model

 \square "Alive" state *i* for life aged $x \ (i \in \{0, ..., N-1\})$



Model

□ Complete transition diagram:



7

Model; data

- □ Simpler model (*Model* 1): ignore age effects (so $b_x \equiv 1$).
- Data from Human Mortality Database: UK females, ages 20 to 104.
 - In sample: years Y to 2000;
 - Out-of-sample: years 2001 to 2016.
- □ For various *N*, find $\lambda(i), i \in \{0, ..., N-1\}$, and $\gamma(i), i \in \{0, ..., N\}$, by minimizing total weighted average quadratic distance (WAQD) between expected mortality and observed mortality.

Then year t has a contribution to the total WAQD of:

$$\sum_{k=0}^{N} p_{0k}(t) \sum_{x=20}^{104} w_{x,t} \left(b_x \sum_{j=0}^{k} \gamma(j) + a_x - \ln \hat{\mu}_{x,t} \right)^2$$

- $w_{x,t}$: weight assigned to age x in year t
- $\hat{\mu}_{x,t}$: empirical mortality rate age x in year t
- a_x : weighted average log-mortality for age x
- $p_{0k}(t)$: transition probability "Alive" state k mid year t

- □ First, consider simple model.
- □ Ideally, the 2*N*+1 parameters $\lambda(i), i \in \{0, ..., N-1\}$, and $\gamma(i), i \in \{0, ..., N\}$, found simultaneously by minimizing WAQD using standard calculus.
 - Problem: not feasible or very time consuming except for small N.
- □ <u>Pragmatic alternative</u>: fix values $\{\lambda(k)\}_{0}^{N-1}$ and derive optimal estimates of $\{\gamma(k)\}_{0}^{N}$. Then perform grid search for minimum WAQD on grid spanned by $\{\lambda(k)\}_{0}^{N-1}$.

10

Define
$$\Gamma(k) = \sum_{j=0}^{k} \gamma(j), k \in \{0, ..., N\}$$
. Optimal values:

$$\hat{\Gamma}(k) = \frac{\sum_{t=1}^{51} p_{0k}(t) \sum_{x=20}^{104} w_{x,t} \left(a_x - \ln \hat{\mu}_{x,t} \right)}{\sum_{t=1}^{51} p_{0k}(t) \sum_{x=20}^{104} w_{x,t}}$$

□ Note the interpretation!

- 1

- \square Assume λ to be constant, so $\lambda = \lambda(0) = \lambda(1) = ...$
- \Box The greater *N*:
 - the smaller the minimum WAQD.
 - □ Interpretation:
 - The greater λ for which WAQD is minimized.
 - □ Interpretation:
 - The closer $\gamma(i), i \in \{1, ..., N\}$, are to 1.
 - □ Interpretation:...

- □ Comprehensive model with b_x (Model 2):
 - Starting values: optimal $\{\gamma(k)\}_0^N$ from simple model as before, and $b_x \equiv 1$.
 - Find optimal $\{\gamma(k)\}_{0}^{N}$ and $\{b_{x}\}_{20}^{104}$ by successive substitution.

- Model 2 applied with N = 50:

 - We estimate $\hat{\lambda} = 1.29$. Pattern of $\Gamma(k) = \sum_{j=0}^{k} \gamma(j), \quad k \in \{0, ..., N\}$:
 - Strongly positive for 0;
 - Decreasing as function of state, becoming negative upon reaching state 33 (and more negative thereafter).
 - Pattern of $\{b_x\}_{20}^{104}$:
 - Relatively high for young ages, compared to later ages;
 - Relatively small for very high ages.

- Markov model augmented by new "Alive" states.
- Issue: standard time series methods do not seem to work.
- □ Instead: employ innovations state space model from Hyndman et al. (2008) to forecast Γ or γ .

- □ Innovations state space model:
 - Observation equation: $\gamma(k) = l_{k-1} + \phi b_{k-1} + \varepsilon_k$
 - State equations:

$$l_{k} = l_{k-1} + \phi b_{k-1} + \alpha \varepsilon_{k}$$
$$b_{k} = \phi b_{k-1} + \beta \varepsilon_{k}$$

 l_k : level of data, superposed on trend b_k ,

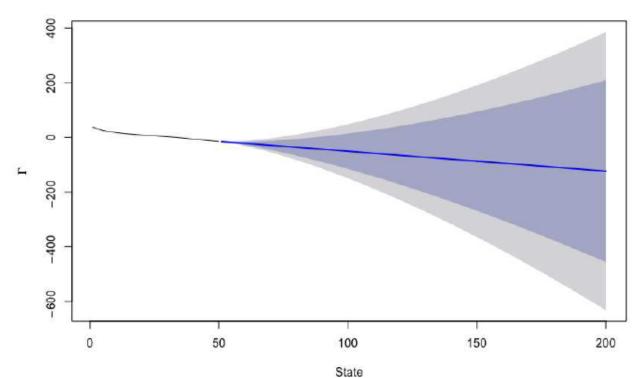
along with additive noise ε_k .

$$\varepsilon_k \sim N(0, \sigma_{\varepsilon}^2)$$

- □ Innovations state space model:
 - Last value of $\gamma(k)$ or $\Gamma(k)$ omitted.
 - Best model selected by bias corrected AIC.
 - Parameter values estimated by ML.
- □ Case considered:

 $W_{x,t} \equiv 1$

□ Illustrative plot of $\Gamma(k)$ for Model 2 with N = 50 with forecasts and confidence intervals.



- $\Box \quad \text{Forecast error for an out-of-sample year } t:$ $\sum_{x=20}^{104} \left[\left(b_x \sum_{k=0}^{N} p_{0k}(t) \sum_{j=0}^{k} \gamma(j) \right) + a_x \ln \hat{\mu}_{x,t} \right]^2$
- □ Three model considered:
 - Naïve model with static mortality as in 2000;
 - Model 2 with N = 50 and Y = 1950.
 - Model 2 with N = 10 and Y = 1990.

□ Three model considered:

- Naïve model with static mortality as in 2000.
- Model 2 with N = 50 and Y = 1950.
- Model 2 with N = 10 and Y = 1990.

□ Observations:

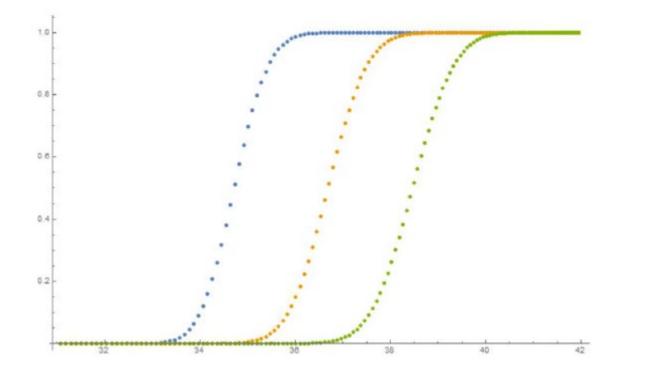
- In terms of <u>total forecast error</u>, Markov models outperform naïve model
- Markov model with fewer states outperforms other Markov model (seems a bit surprising).

Applications in life insurance and pensions

- □ Common measures of mortality changes:
 - Distributions of expectations of life
 - Distributions of present values of annuities
- Markov model enables exact calculation of these measures by solving Thiele's differential equations.
- □ Examples concern
 - Durations 25, 40 and 55 (so calendar years 2000, 2015 and 2030), and
 - Ages 50 and 80.

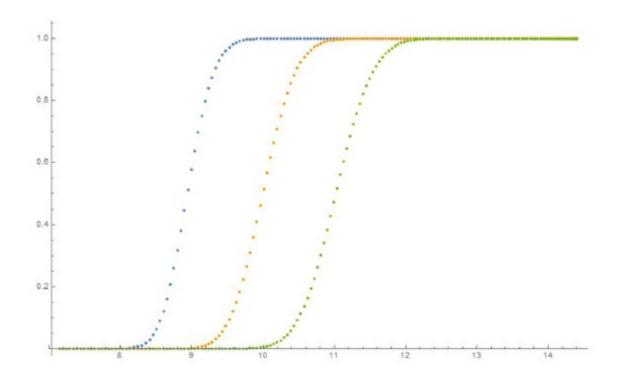
Applications in life insurance and pensions

Cumulative distribution function of complete expectation of life for age 50:



Applications in life insurance and pensions

Cumulative distribution function of complete expectation of life for age 80:



Avenues for future research

- □ Use criteria other than WAQD
- Relax assumption of constant transition intensities
- □ Allow for idiosyncratic shocks
- □ Forecasting:
 - More rigorous and systematic investigation into impact of combination of factors (number of states, period of investigation, transition intensity)
 - Use information on prediction intervals

References

- Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008). Forecasting with exponential smoothing: the state space approach. Springer, Berlin.
- □ Norberg, R. (2013). Optimal hedging of demographic risk in life insurance. *Finance and Stochastics* 17(1), 197-222.