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Worked example as in Norberg 
(2013)
 Stochastic mortality changes modelled 

through time-homogeneous Markov chain
 Three causes of death:
 First two causes are in force at all ages until 

disappearing independently at random times 
which are exponentially distributed.

 Third cause remains in force, alternating between 
low and high mortality.
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Aim of this paper
 Calibrate suitable time-homogeneous Markov 

chain model of stochastic mortality to real 
data.

 Challenges:
 Cause-specific mortality: possible correlation 

between causes of death.
 Mortality in aggregate terms: usually only 

number of deaths and risk exposure observed.
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Model
 A Markov chain with N + 1 “Alive” states and 

one “Dead” state.
 For individual aged x, transition of one 

“Alive” state i to next one,     , rate         , 
leads to change in mortality of                                   

   .
 From last “Alive” state only transition to 

death state possible.
5

1i +

( )exp 1xb iγ + 

( )iλ



Model
 “Alive” state i for life aged x  
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Model
 Complete transition diagram:
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Model; data
 Simpler model (Model 1): ignore age effects 
     (so          ).
 Data from Human Mortality Database: UK females, 

ages 20 to 104.
 In sample: years Y to 2000;
 Out-of-sample: years 2001 to 2016.

 For various N, find                               and                      
  by minimizing total weighted 

average quadratic distance (WAQD) between 
expected mortality and observed mortality. 8
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Calibration to data
 Then year t  has a contribution to the total 

WAQD of: 
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Calibration to data
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 First, consider simple model.
 Ideally, the 2N+1 parameters                                                      

and                           found simultaneously by 
minimizing WAQD using standard calculus.
 Problem: not feasible or very time consuming except for 

small N.
 Pragmatic alternative: fix values               and derive 

optimal estimates of              .  Then perform grid 
search for minimum WAQD on grid spanned by
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Calibration to data
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 Define                                           . Optimal values:         
                          

       

 Note the interpretation!
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Calibration to data
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 Assume λ to be constant, so 
 The greater N:
 the smaller the minimum WAQD.

 Interpretation: ......
 The greater λ for which WAQD is minimized.

 Interpretation: ....
 The closer                             are to 1.

 Interpretation:...
( ) { }, 1,..., ,i i Nγ ∈

( ) ( )0 1 ...λ λ λ= = =



Calibration to data
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 Comprehensive model with     (Model 2):
 Starting values: optimal               from simple model as 

before, and           .
 Find optimal                and             by successive 

substitution.
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Calibration to data
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 Model 2 applied with            :
 We estimate               .
 Pattern of                                                           :

 Strongly positive for 0;
 Decreasing as function of state, becoming negative upon 

reaching state 33 (and more negative thereafter).

 Pattern of             :
 Relatively high for young ages, compared to later ages;
 Relatively small for very high ages.
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Forecasting
 Markov model augmented by new “Alive” 

states.
 Issue: standard time series methods do not 

seem to work.
 Instead: employ innovations state space 

model from Hyndman et al. (2008) to forecast 
Γ or γ.
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Forecasting
 Innovations state space model:
 Observation equation:

 State equations:
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Forecasting
 Innovations state space model:
 Last value of         or          omitted.
 Best model selected by bias corrected AIC.
 Parameter values estimated by ML.

 Case considered:
  
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Forecasting
 Illustrative plot of        for Model 2 with
     with forecasts and confidence intervals.
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Forecasting
 Forecast error for an out-of-sample year t:

 Three model considered:
 Naïve model with static mortality as in 2000;
 Model 2 with                and                 .                 
 Model 2 with                and                 .
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Forecasting
 Three model considered:
 Naïve model with static mortality as in 2000.
 Model 2 with                and                 .                 
 Model 2 with                and                 .

 Observations:
 In terms of total forecast error, Markov models 

outperform naïve model
 Markov model with fewer states outperforms 

other Markov model (seems a bit surprising).
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Applications in life insurance and 
pensions
 Common measures of mortality changes:

 Distributions of expectations of life
 Distributions of present values of annuities

 Markov model enables exact calculation of these 
measures by solving Thiele’s differential equations.

 Examples concern
 Durations 25, 40 and 55 (so calendar years 2000, 2015 

and 2030), and
 Ages 50 and 80.
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Applications in life insurance and 
pensions
 Cumulative distribution function of complete 

expectation of life for age 50:
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Applications in life insurance and 
pensions
 Cumulative distribution function of complete 

expectation of life for age 80:
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Avenues for future research
 Use criteria other than WAQD
 Relax assumption of constant transition intensities
 Allow for idiosyncratic shocks
 Forecasting: 

 More rigorous and systematic investigation into impact of 
combination of factors (number of states, period of 
investigation, transition intensity)

 Use information on prediction intervals
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