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Motivation

Three main components in mortality modeling: Age, Time,
Cohort.

Importance of cohort effects (particularly for UK data).

Challenges of stochastic mortality models involving cohort
effects.

Slow model fitting process.
Limited types of model fitting approaches (only
likelihood-based).

Our main objective – Develop a fast non-likelihood-based
estimation approach.

2 / 23



Motivation Introduction Proposed Methodology Numerical Studies Conclusion

Outline

1 Review of the Lee-Carter model and Renshaw-Haberman
model (generalized APC model).

2 Main proposed methodology.

3 Numerical studies.

4 Conclusion and further research.
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Review: The Lee-Carter Model

The Lee-Carter model (Lee and Carter, 1992):

yx ,t := log(mx ,t) = ax + bxkt + εx ,t , (1)

with
∑

x bx = 1 and
∑

t kt = 0,

mx ,t : Central mortality rate for age x and time t.

ax : Average log mortality rate for age x .

bx : Age effect (sensitivity) for age x .

kt : Time trend.

It involves two stage:

1 Estimating ax , bx and kt ;

2 Time series modeling on {kt} and forecasting.
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Two Parameter Estimation Methods for the

Lee-Carter Model

1 SVD, non-likelihood-based (Lee and Carter, 1992):

min
(a,b,k)

∑
x ,t

(yx ,t − (ax + bxkt))
2 . (2)

The solution is obtained via PCA:

â = ȳ , b̂ =
u

1Tu
, k̂ = (1Tu) · (Y − Ȳ )Tu. (3)

2 Poisson regression, likelihood-based (Brouhns et al., 2002):

max
(a,b,k)

∑
x ,t

(
Dx ,t(ax + bxkt)− Nx ,te

ax+bxkt
)
. (4)

The MLE is obtained via the iterative Newton-Raphson.

Comparison of the two methods: Interpretability? Flexibility?
Computation?
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Is the Lee-Carter Model Good Enough?

Residual heatmap of England and Wales data:

Cohort effects (diagonal) are significant!
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Cohort Effects: The Renshaw-Haberman Model

The Renshaw-Haberman model or generalized APC model
(Renshaw and Haberman, 2006):

yx ,t := log(mx ,t) = ax + bxkt + cxγt−x , (5)

with
∑

x bx =
∑

x cx = 1 and
∑

t kt =
∑

t−x γt−x = 0.

cx : Age effect (sensitivity) with respect to the cohort effects.

γt−x : Cohort effects.

Simplified variants of the model can be obtained by setting
cx = 1/p or bx = cx = 1/p, where p is the number of ages.
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Parameter Estimation and Slow Convergence

The parameter estimation is likelihood-based Poisson GLM
framework (via iterative Newton-Raphson):

max
(a,b,k,c,γ)

∑
x ,t

(
Dx ,t(ax + bxkt + cxγt−x)− Nx ,te

ax+bxkt+cxγt−x
)
.

(6)

Critical issue: Slow convergence rate (Cairns et al., 2009,
2011; Haberman and Renshaw, 2009, 2011).

It hinders the use Monte-Carlo or bootstrap to examine
parameter/model uncertainty.

Some literature has worked on improving the convergence:
Hunt and Villegas (2015) and Currie (2016).

8 / 23



Motivation Introduction Proposed Methodology Numerical Studies Conclusion

About this Project

To the best of our knowledge, all the existing estimation
methods are likelihood-based.

Our objectives:

1 Propose a non-likelihood-based (PCA-based) estimating
method for the Renshaw-Haberman model and its variants.

2 Accelerate the parameter estimation process.
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Non-Likelihood Parameter Estimation: Key Idea

The non-likelihood-based approach to fit the Lee-Carter model
is via SVD or PCA:

min
(a,b,k)

∑
x ,t

(yx ,t − (ax + bxkt))
2 . (7)

Similarly, we aim at directly minimizing the L2 error of the
estimated log mortality rates under the RH framework:

min
(a,b,k,c,γ)

∑
x ,t

(yx ,t − (ax + bxkt + cxγt−x))
2 . (8)

No close-form solution exists, due to the non-orthogonality.
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Main Algorithm: Alternating Minimization

The minimization of (8) is via an iterative scheme:

1 Set initial values of θ := (a,b, k , c ,γ).
2 Fixing b, k , c and γ, update a:

min
a

∑
x,t

[(yx,t − bxkt − cxγt−x)︸ ︷︷ ︸
given

−ax ]
2. (Easy) (9)

3 Fixing a, c and γ, update b and k :

min
(b,k)

∑
x,t

[(yx,t − ax − cxγt−x)︸ ︷︷ ︸
given

−bxkt ]
2. (Easy) (10)

4 Fixing ax , b and k , update c and γ:

min
(c,γ)

∑
x,t

[(yx,t − ax − bxkt)︸ ︷︷ ︸
given

−cxγt−x ]
2. (Difficult) (11)

5 If the objective function has not converged, go back to Step 2.
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Parameter Estimation: Challenges in the

Optimization

Step 4 is much more challenging and has no explicit solution:

min
(c,γ)

∑
x ,t

[(yx ,t − ax − bxkt)︸ ︷︷ ︸
given

−cxγt−x ]
2.

But it turns out that Step 4 is equivalent to solving a PCA
with missing values.
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Cohort-effect Estimation: Why PCA with Missing

Values?

Denote the age range and time range by (x1, · · · , xp) and
(t1, · · · , tn). Letting zx ,t := yx ,t − ax − bxkt , we can transform
the age-time matrix to the new age-cohort matrix1

× × · · · · · · × z1,1 · · · z1,n−1 z1,n
× × · · · · · · z2,1 z2,2 · · · z2,n ×
...

... . .
.

. .
. ...

...
...

... . .
.

. .
. ...

...
× zp−1,1 · · · zp−1,n−1 zp−1,n · · · · · · × ×
zp,1 zp,2 · · · zp,n × · · · · · · × ×


1This is guaranteed by the one-to-one transformation between (x , t)

and (x , t − x). Also, × represents missing values.
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Cohort-effect Estimation: PCA with Missing

Values - Formulation and Algorithms

Letting s = t − x , the PCA with missing values problem can
be formulated as:

min
(a,c,γ)

∑
(x ,t−x)∈O

[zx ,t−x − cxγt−x ]
2, (12)

where O is the set of the indices of the observed values.

Different approaches exist to solve PCA with missing values:

1 Small-scale: Iterative SVD (focus of this project);
2 Large-Scale and sparse: matrix completion with nuclear norm

regularization (Mazumder et al., 2010), etc.
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Cohort-effect Estimation: Iterative SVD Algorithm

Iterative SVD algorithm (also known as hard-imputation):

1 Initialization: Impute the missing values and initialize the
approximate complete matrix Zc .

2 Approximate PCA: Implement PCA via SVD to the
approximate complete matrix Zc .

3 Imputation: Update the missing values by using the
corresponding PCA reconstructions in Step 2.

4 Repeat Steps 2 and 3 until the convergence criterion is
satisfied.

We proved the convergence of the iterative SVD algorithm
within our context.
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Experimental Design

In this talk, we compare two methods:

RH-2006 : Standard iterative Newton-Raphson method
(Renshaw and Haberman, 2006).
RH-NL: Proposed non-likelihood-based method.

Data set: England & Wales (EW) and US male mortality
rates, from 1950 to 2019, age from 60-89.

We compare the fitted L2 errors, log-likelihoods and
computation time.
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Plots: RH Model, EW Data
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Plots: RH Model, US Data
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Numerical Results

RH Model Data RH-2006 RH-NL

L2 error
EW 0.578 0.565
US 0.472 0.465

Log-likelihood
EW −12843 −12890
US −17736 −17828

Time (sec)
EW 336.68 38.72
US 228.72 10.44

We have chosen the same tolerance levels (relative changes of
the objective function) to make the comparison fair.
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Conclusion and Future Research

We proposed a non-likelihood-based estimating method for
the Renshaw-Haberman model.

The proposed method is significantly faster than the
traditional likelihood-based method, while producing
satisfactory estimation results.

Possible future research:

Further accelerate the algorithm by incorporating additional
identification constraints.
Extension to multi-component structure, with proper
regularization.
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