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Motivation
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Motivation

@ Three main components in mortality modeling: Age, Time,
Cohort.

e Importance of cohort effects (particularly for UK data).

@ Challenges of stochastic mortality models involving cohort
effects.

@ Slow model fitting process.
o Limited types of model fitting approaches (only
likelihood-based).

@ Our main objective — Develop a fast non-likelihood-based
estimation approach.
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Outline

© Review of the Lee-Carter model and Renshaw-Haberman
model (generalized APC model).

@ Main proposed methodology.
© Numerical studies.

@ Conclusion and further research.
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Review: The Lee-Carter Model

The Lee-Carter model (Lee and Carter, 1992):
Vit 1= log(my ) = ax + beke + xt, (1)

with >~ by=1and >, k =0,

@ m, :: Central mortality rate for age x and time t.

@ a,: Average log mortality rate for age x.

@ b,: Age effect (sensitivity) for age x.

@ k;: Time trend.
It involves two stage:

@ Estimating ax, by and k¢;

@ Time series modeling on {k:} and forecasting.
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Two Parameter Estimation Methods for the

ee-Carter Model

@ SVD, non-likelihood-based (Lee and Carter, 1992):

i ot — (ax + beke))?. 2
i) 2 O (2 k) @
The solution is obtained via PCA:

~ u _

A_ = _ P T T
a=y, b_ﬁ’ k=1"u)-(Y-Y)"u. (3)
@ Poisson regression, likelihood-based (Brouhns et al., 2002):

max (Dx,t(ax + beke) — Nx,teaﬁbxkt) . @)
(a,b,k) o

The MLE is obtained via the iterative Newton-Raphson.

Comparison of the two methods: Interpretability? Flexibility?

Computation?
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Is the Lee-Carter Model Good Enough?

Residual heatmap of England and Wales data:
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Cohort effects (diagonal) are significant!
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Cohort Effects: The Renshaw-Haberman Model

The Renshaw-Haberman model or generalized APC model
(Renshaw and Haberman, 2006):

Y 1= log(my) = ax + beke + cxVe—x, (5)
with Y be=> o =1and > ke=>, 7V-x=0.
@ ¢, Age effect (sensitivity) with respect to the cohort effects.
@ 7:_x: Cohort effects.

Simplified variants of the model can be obtained by setting
¢ =1/por b, =c,=1/p, where p is the number of ages.
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Parameter Estimation and Slow Convergence

The parameter estimation is likelihood-based Poisson GLM
framework (via iterative Newton-Raphson):

(372]/3);7) Z (DX,t(aX + kat + er)/t—x) - Nx,teax+kat+CX%7X> .
(6)

Xx,t

@ Critical issue: Slow convergence rate (Cairns et al., 2009,
2011; Haberman and Renshaw, 2009, 2011).

@ It hinders the use Monte-Carlo or bootstrap to examine
parameter/model uncertainty.

@ Some literature has worked on improving the convergence:
Hunt and Villegas (2015) and Currie (2016).
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About this Project

To the best of our knowledge, all the existing estimation
methods are likelihood-based.

Our objectives:

© Propose a non-likelihood-based (PCA-based) estimating
method for the Renshaw-Haberman model and its variants.

@ Accelerate the parameter estimation process.
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Non-Likelihood Parameter Estimation: Key |dea

The non-likelihood-based approach to fit the Lee-Carter model
is via SVD or PCA:

i - ke))?.
iy 2 e = (3 b)) g

X,t

Similarly, we aim at directly minimizing the L2 error of the
estimated log mortality rates under the RH framework:

. 2
(a,lg]kl,rt]:,'y) Z (yx,t - (ax + bxkt + CX/YI’—X)) . (8)

X,t

No close-form solution exists, due to the non-orthogonality.
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Main Algorithm: Alternating Minimization

@ The minimization of (8) is via an iterative scheme:
@ Set initial values of 8 := (a, b, k, c,~).
@ Fixing b, k, ¢ and ~, update a:

main Z[(YX,t - bxkt - Cx’thx) _ax]2' (Easy) (9)

X,t

given

© Fixing a, ¢ and ~, update b and k:

rlr:lp) Z[ Yxt = 3 — CxVt—x) —b.k]?. (Easy) (10)

given

© Fixing a,, b and k, update ¢ and ~:

mln)Z[yxt ay — beke) —cve—x]?.  (Difficult)  (11)
c,y _,—/
given

© If the objective function has not converged, go back to Step 2.
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Parameter Estimation: Challenges in the

Optimization

Step 4 is much more challenging and has no explicit solution:

min Z[ Yxt — ax — by kt) Cx%—x]z-

(cv)

glven

But it turns out that Step 4 is equivalent to solving a PCA
with missing values.
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Cohort-effect Estimation: Why PCA with Missing

Values?

Denote the age range and time range by (x,--- ., x,) and
(t,--- ,ty). Letting zc+ 1= yxt — ax — bxk;, we can transform
the age-time matrix to the new age-cohort matrix!

X X ce ce X 211t Zip-1 Zn
X X cen “e 21 Zp vt 2.0 X
X prl,l e prl,nfl prl,n e [N X X

| Zp,1 Zp2 ce Zpn X e e X X |

1This is guaranteed by the one-to-one transformation between (x, t)

and (x,t — x). Also, x represents missing values.
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Cohort-effect Estimation: PCA with Missing

Values - Formulation and Algorithms

@ Letting s =t — x, the PCA with missing values problem can
be formulated as:

min Z [Zx,t—x - Cx’Yt—X]27 (12)
(a,c7) (x,t—x)eO

where O is the set of the indices of the observed values.

@ Different approaches exist to solve PCA with missing values:

© Small-scale: lterative SVD (focus of this project);
© Large-Scale and sparse: matrix completion with nuclear norm
regularization (Mazumder et al., 2010), etc.
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Cohort-effect Estimation: Iterative SVD Algorithm

lterative SVD algorithm (also known as hard-imputation):

@ Initialization: Impute the missing values and initialize the
approximate complete matrix Z..

@ Approximate PCA: Implement PCA via SVD to the
approximate complete matrix Z.

© Imputation: Update the missing values by using the
corresponding PCA reconstructions in Step 2.

© Repeat Steps 2 and 3 until the convergence criterion is
satisfied.

We proved the convergence of the iterative SVD algorithm
within our context.
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Experimental Design

@ In this talk, we compare two methods:

e RH-2006: Standard iterative Newton-Raphson method
(Renshaw and Haberman, 2006).
@ RH-NL: Proposed non-likelihood-based method.

@ Data set: England & Wales (EW) and US male mortality
rates, from 1950 to 2019, age from 60-89.

@ We compare the fitted L? errors, log-likelihoods and
computation time.
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Plots: RH Model, EW Data
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Plots: RH Model, US Data

Numerical Studies
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Numerical Results

Data RH-2006 RH-NL
2 arror EW  0.578 0.565
us 0.472 0.465

— EW  —12843 —12890
Log-likelihood US —17736 —17828

Time (sec) EW  336.68 38.72
usS 228.72 10.44

RH Model

We have chosen the same tolerance levels (relative changes of
the objective function) to make the comparison fair.
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Conclusion and Future Research

@ We proposed a non-likelihood-based estimating method for
the Renshaw-Haberman model.

@ The proposed method is significantly faster than the
traditional likelihood-based method, while producing
satisfactory estimation results.

@ Possible future research:

o Further accelerate the algorithm by incorporating additional
identification constraints.

@ Extension to multi-component structure, with proper
regularization.
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