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Objective

• Evaluate future longevity metrics using (extrapolative) forecasting
mortality models ⇝ longevity risk

▶ cohort approach vs period approach ⇝ conditional expectations

▶ multiple populations ⇝ biometric constraints

▶ simulation ⇝ empirical distribution

▶ main tool: Least-Square Monte Carlo (LSMC) method
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Cohort Based Valuations

• Importance of cohort based valuations

▶ Cairns et al. 2011a, 2011b (annuities and longevity metrics) ⇝ Taylor
expansion (re-simulation)

▶ Boyer and Stentoft, 2013, 2017 (survival probs and longevity
derivatives)

▶ Feng et al. 2022 ⇝ green nested simulations

• LSMC:

▶ American options: Tilley 1993, Carriere 1996, Tsitsiklis & Van Roy
2001, Longsta� & Schwarz 2001, . . .

▶ surrender option: Andreatta & Corradin 2003, Bacinello et al. 2008,
2009, 2011

▶ solvency requirements: Floryszczak, et al 2016, Bauer and Ha 2018
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Extrapolative Stochastic Mortality Models

• Multiple populations: m
(p)
x ;t = central death rate at age x in year t for

population p

m
(p)
x ,t = f (t, x , p,Xt)

▶ populations: M/F, set of countries, smokers/non smokers, national
population/pension scheme, . . .

▶ Xt = (vector of Markov) state variables

▶ most extrapolative multi-population models included here: CF, ACF,
Common Age E�ect, joint/relative, . . . (Villegas et al. 2017, Enchev et
al. 2017, Li et al. 2015)

▶ latent or explanatory variables (Boonen & Li, 2017)
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Extrapolative Stochastic Mortality Models

• Example: Augmented Common Factor (ACF) model, (Li & Lee 2005),
p = M,F

▶ death counts D
(p)
x,t ∼ Poisson

(
E

(p)
x,t m

(p)
x,t

)
,

logm
(p)
x,t = α(p)

x + BxKt + β(p)
x κ

(p)
t , p = M, F

▶ Kt common factor, κ
(p)
t , p = M,F speci�c factors

▶ Xt = (Kt , κ
(M)
t , κ

(F )
t )
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Cohort vs Period

• Future calculations with a stochastic mortality model: period or

cohort?

• 0 = today, T > 0 future time; x age of the individual at time T

• Φ: a function(al) de�ning the metric to be calculated

▶ period
Φ(mx,T ,mx+1,T ,mx+2,T , . . .)︸ ︷︷ ︸

known at T

▶ cohort
ET [Φ(mx,T ,mx+1,T+1,mx+2,T+2, . . .)︸ ︷︷ ︸

not known at T

]
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Cohort vs Period

• Formally

▶ Ft information available at time t ⇝ includes information on mortality
rates up to time t

σ(Xu, u ≤ t) ⊂ Ft

▶ τx(t) residual lifetime of a (representative) individual aged x at time t
⇝ stopping time in (Ft+u)u≥0

▶ biometric variables:
M = σ(Xt , t ≥ 0)

▶ (implicit) assumption:

P(τx(t) ≥ l |Ft ∨M) = exp

{
−

l−1∑
k=0

mx+k,T+k

}
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Cohort vs Period

• Example: l-years survival prob. for an individual aged x at time T

▶ period:

lpx,T = exp

{
−

l−1∑
k=0

mx+k,T

}

▶ cohort:

lpx(T ) = PT (τx(T ) ≥ l) = ET

[
exp

{
−

l−1∑
k=0

mx+k,T+k

}]
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Cohort vs Period

• Period vs cohort

▶ period only considers mortality improvements up to time T , neglects
further improvements after T

▶ cohort: more sound approach

• Closed form expressions

▶ available under some special cases (eg a�ne processes, Bi�s 2005)

▶ not available under most common stochastic mortality models (LC,
CBD with Gaussian time indices: sum of lognormals)

• Evaluate the conditional expectations under the cohort approach via

LSMC
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Pros/Cons of the LSMC

• Pros

▶ universality wrt model choice

▶ �exibility wrt contract structure

▶ consistent assessment wrt multiple values of x and T

• Cons

▶ needs to store all simulations

▶ number of simulations vs number of basis functions? Moreno and
Navas 2003, Stentoft 2004
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Longevity Measures

• Focus on

▶ life expectancy ⇝ location

▶ lifespan disparity ⇝ dispersion

▶ can be extended to other metrics

• Serious misspeci�cation due to

▶ cohort vs period approach ⇝ e�ect of rolling improvements

▶ single vs multi-population ⇝ interaction between groups, coherent
assessment
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Life Expectancy

• For an individual aged x at time T > 0

▶ period:

epx,T =
1

2
+

∞∑
l=1

lpx,T

▶ cohort:

ecx (T ) =
1

2
+

∞∑
l=1

lpx(T )

=
1

2
+ ET

[ ∞∑
l=1

exp{− (mx,T + . . .+mx+l−1,T+l−1)}

]
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Lifespan Disparity

• Life expectancy lost due to death by an individual aged x at time t
(Vaupel, 1986), aka numbers of years of life lost

• For an individual aged x at time T > 0

▶ period:

e†, px,T =
∞∑
k=0

epx+k,T · kpx,T · (1− e−mx+k,T )
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Lifespan Disparity

• Life expectancy lost due to death by an individual aged x at time t
(Vaupel, 1986), aka numbers of years of life lost

• For an individual aged x at time T > 0

▶ cohort:

e†, cx (T ) =ET

[
ecx+τx (T )(T + τx(T ))

]
=ET

[ ∞∑
k=0

(1− e−mx+k,T+k )
∞∑
h=1

e−
∑k+h−1

l=0 mx+l,T+l

]

=ET

[ ∞∑
k=0

ecx+k(T + k) · e−
∑k−1

l=0 mx+l,T+l ·
(
1− e−mx+k,T+k

)]

⇝ �double� LSMC!
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Longevity Metrics

• More generally, for any functional Φ

ZT ,x = ET [Φ(mx ,T ,mx+1,T+1,mx+2,T+2, . . .)]

then a double LSMC can be used

ET [ZT+τx (T ),x+τx (T )] =

=ET

[ ∞∑
k=0

ZT+k,x+k · e−
∑k−1

l=0 mx+l,T+l ·
(
1− e−mx+k,T+k

)]
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Data

• Italian F & M population deaths from HMD

▶ period: 1965-2016

▶ age: 35-89

▶ Fit:

⋆ ACF (Kt : RWD, κ
(M)
t , κ

(F )
t : AR(1))

⋆ LC model ⇝ independent modelling

▶ log-linear closure up to the ultimate age 120

▶ 20000 simulations

▶ basis functions: raw polynomials of degree 3

▶ simulate future life expectancy and lifespan disparity for M and F aged
x = 65 at future horizons T ∈ {2017, . . . , 2050}.
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Life Expectancy - LC vs ACF
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Life Expectancy - Period (blue) vs Cohort (red)
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Lifespan Disparity - LC vs ACF
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Lifespan Disparity - Period (blue) vs Cohort (red)
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Conclusion

• Simulation + regression approach to calculate cohort based future
annuity values and other longevity metrics

▶ �exibility

▶ wide range of applications

▶ joint longevity metrics
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Thank you!
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