# **Looking Beyond SA-CCR**

#### **Michael Pykhtin**

Federal Reserve Board

#### **Financial Engineering Workshop** *Bayes Business School*

February 8, 2023

The opinions expressed here are my own, and do not necessarily reflect the views of the Federal Reserve Board

### **Discussion Plan**

- SA-CCR and its shortcomings
- Modeling fundamentals of the proposed framework
- Expected exposure and exposure at default
- Examples
  - Interest rate swap
  - Cross-currency swap and foreign exchange forward

- Foreign exchange options

#### Papers:

Michael Pykhtin, *Analytical Framework for Counterparty Credit Exposure*, SSRN working paper: https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=4121677

Michael Pykhtin, Looking beyond SA-CCR, Risk, January 2023

## **SA-CCR and its shortcomings**

#### **Counterparty Credit Exposure in Basel III**

- Basel III treats *counterparty credit risk* (CCR) under the rules for *wholesale exposures* with CCR-specific rules for calculating *exposure at default* (EAD)
- A bank can use the *internal model method* (IMM) to calculate EAD, subject to supervisory approval
- All banks *without* supervisory approval of IMM must use the *standardized approach for counterparty credit risk* (SA-CCR) for EAD calculation
- Other applications of SA-CCR would include centrally cleared transactions, leverage ratio, large exposure framework

5

## **Exposure at Default (EAD)**

- The target **EAD** measure for SA-CCR is the corresponding IMM's measure of *alpha* (equal to 1.4) times *Effective EPE*
- SA-CCR specifies EAD at a *netting set* (NS) level: EAD =  $\alpha \cdot (RC + PFE)$ 
  - RC is *replacement cost*; PFE is *potential future exposure*
- The RC is defined differently for *non-margined* vs. *margined* NS  $RC_{No Margin} = \max \{V(0), 0\}$   $RC_{Margin} = \max \{V(0) - VM(0) - IM(0), H_C, 0\}$ 
  - $H_C$  is the counterparty VM *threshold*
- The RC of a *margined* NS can be unreasonably high for large  $H_C$ 
  - This problem is remediated by capping *margined* EAD by the otherwise equivalent *non-margined* EAD

#### **Potential Future Exposure (PFE)**

- SA-CCR specifies PFE as  $PFE = A_{NS} \cdot Multiplier\left(\frac{V(0) - VM(0) - IM(0)}{A_{NS}}\right)$ 
  - $-A_{\rm NS}$  is the *aggregated* add-on of the NS
  - The *multiplier* reduces the value of PFE when V(0) VM(0) VM(0) < 0Multiplier $(x) = \min\left\{0.05 + 0.95 \cdot \exp\left(\frac{x}{1.9}\right); 1\right\}$
- $A_{\text{NS}}$  is obtained via aggregating *trade-level* add-ons in the NS  $A_{\text{NS}} = \left[\sum_{j,k \in \text{NS}} \rho_{jk} \cdot A_j \cdot A_k\right]^{\frac{1}{2}}$ 
  - In reality, there is a *three-step* aggregation based on this formula: within primary risk factor  $\rightarrow$  within hedging set  $\rightarrow$  within NS

#### **Trade-Level Add-On**

- *Trade-level* add-on  $A_i$  for contract *i* can be represented as  $A_i = \text{RegSens}_i \cdot \text{RW}_i$ 
  - RegSens<sub>i</sub> is the *sensitivity* of the market value of contract *i* to the primary risk factor that drives contract *i*, specified by regulators
  - $\mathbf{RW}_i$  is the *risk weight* of the primary risk factor of contract *i* that accounts for the risk factor's variability over the appropriate risk horizon
    - The risk horizon is  $\min\{M_i, 1Y\}$  for *non-margined* trades and **MPoR** for *margined* trades
- This representation is *similar* to the one used in FRTB in the sensitivity-based method (SbM) for market risk except
  - The representation applies to a *contract* rather than a *risk factor*
  - The sensitivities are supplied by *regulators* rather than calculated *internally*
  - The risk weights connect to *expected exposure* measure rather than *expected shortfall*

## **Regulatory Sensitivities**

• Each regulatory sensitivity is expressed as

 $\operatorname{RegSens}_i = \delta_i \cdot d_i$ 

- Adjusted notional d<sub>i</sub> is the regulatory sensitivity of contract i to the primary risk factor that *ignores*: (i) the contract's *direction* (long/short); (ii) possible *non-linearity*
  - The adjusted notional is specified for each asset class using simplified valuation of most common linear instruments of that asset class
- Supervisory delta adjustment δ<sub>i</sub> specifies the direction of the contract with respect to the primary risk factor and provides a scaling adjustment for options and CDO tranches
  - **Options:** the Black-Scholes formulas for delta for European options
  - **<u>CDO tranches</u>**: a formula based on Basel benchmarking exercise

$$\delta_i = \pm \frac{15}{(1 + 14A_i) \cdot (1 + 14D_i)}$$

8

### **Risk Weights**

For each trade, the *risk weight* is expressed as  $RW_i = SF_{k(i)} \cdot MF_i$ 

- where k(i) means the *primary risk factor* for trade *i* 

- Supervisory factor SF<sub>k</sub> is a measure of variability of risk factor k over a standard 1-year horizon
  - It is based on *expected exposure* measure produced by a single unit-size trade that is linear in this risk factor and has the current value of zero
- Maturity factor MF<sub>i</sub> scales down (if necessary) the standard
  1-year horizon to the risk horizon appropriate for the trade

- Non-margined:  $MF_i = \sqrt{\min\{M_i; 1\}}$ , where  $M_i$  is the remaining maturity

- Margined: 
$$MF_i = \frac{3}{2}\sqrt{MPoR_{MA(i)}}$$
, where  $MPoR_{MA(i)}$  is the *margin period of risk* of the margin agreement MA(*i*) that trade *i* belongs to

## **Shortcomings of SA-CCR**

#### *Regulatory* sensitivities are used

- Regulatory sensitivities are not suitable for many products
- BCBS already uses internal sensitivities in FRTB
- Mapping each trade to a *single* "primary" risk factor
  - Most derivatives depend on multiple risk factors
  - SA-CCR cannot handle basis trades
- *Compressing* time dimension of exposure at *trade* level
  - Exposure can be meaningfully aggregated only for a fixed default time
  - Otherwise, non-economic artifacts are possible
    - **Example:** a short-term trade can perfectly offset a long-term trade
- Crude treatment of VM *thresholds* 
  - $H_C$  is added to margined PFE, while  $H_B$  is ignored

Modeling fundamentals of the proposed framework

## Inputs

- We are interested in EAD of bank **B** to counterparty **C**
- *External* inputs (potentially provided by regulators)
  - A set of standard *risk factors*  $\{X_k\}$  that span all asset classes
  - For each risk factor k: risk factor volatility  $\sigma_k$
  - For each pair of risk factors k and l: *correlation*  $\rho_{kl}$  between them
- Internal inputs (provided by B)
  - For each trade *i*: the current *market value*  $V_i(0)$
  - For each trade *i*: the remaining *maturity*  $M_i$
  - For each trade *i*: the *sensitivity*  $s_{ik}(0) \equiv \partial V_i(0) / \partial x_k$  to each risk factor k
  - The schedule of the conventional *independent amount* IA(t)
  - The amount of *initial margin* IM(0) subject to the *uncleared margin requirements* (UMR) that **B** currently holds

## **Dynamics for Individual Transactions**

- Assumption #1: risk factors follow driftless Brownian motions  $X_k(t) = X_k(0) + \sigma_k w_k(t)$ 
  - *volatility* for risk factor k is equal to the regulatory volatility  $\sigma_k$
  - *correlation* between  $w_k$  and  $w_l$  is equal to the regulatory correlation  $\rho_{kl}$
- Assumption #2: market value  $V_i(t)$  of trade *i* at time *t* is  $V_i(t) = V_i(0|t) + \sum_k s_{ik}(t) [X_k(t) - X_k(0)]$
- Two quantities appear in this specification
  - $V_i(0|t)$  is the expectation of  $V_i(t)$  measured today
  - $s_{ik}(t)$  is the sensitivity of  $V_i(t)$  to risk factor k measured today
- Both quantities have to be determined from the *available* inputs

### **Forward Projections of Market Values**

- Ideally, we would like to set V<sub>i</sub>(0|t) equal to the *forward* to time t market value of trade i
  - Forward to time t market value is the expectation of  $V_i(t)$  under the forward to time t probability measure
- Calculations of forward market values would be *unfeasible*, so we need an alternative, simpler specification of  $V_i(0|t)$
- Primary risk factors are *prices* (P) (FX, equity, commodity)  $V_i^{(P)}(0 \mid t) = 1_{\{t \le M_i\}} V_i^{(P)}(0)$
- Primary risk factors are *rates* or *spreads* (R) (IR, credit)

$$V_i^{(R)}(0 \mid t) = \frac{\max\{t, E_i\} - \max\{t, S_i\}}{E_i - S_i} \mathbf{1}_{\{t \le M_i\}} V_i^{(R)}(0)$$

-  $S_i$  and  $E_i$  are *start date* and *end date* of the period referenced by rates

## **Forward Projections of Sensitivities**

- In reality, the dependence of  $V_i(t)$  on the risk factors would often be *non-linear* 
  - The future sensitivity  $\partial V_i(t) / \partial X_k$  would be *uncertain* in such cases
- We define *deterministic* sensitivity  $s_{ik}(t)$  as the expectation of the future sensitivity

$$s_{ik}(t) \equiv \mathrm{E}\left[\frac{\partial V_i(t)}{\partial X_k(t)}\right]$$

- We divide all *risk factors*  $\{X_k\}$  into three categories
  - (P) representing *prices* (FX, equity, commodity)
  - (R) representing *rates* or *spreads* applied to time intervals (IR, credit)
  - (V) representing option *volatilities*

### **Forward Projections of Sensitivities**

• (P) risk factors: forward projection is set equal to the spot sensitivity until trade maturity

$$s_{ik}^{(P)}(t) = \mathbf{1}_{\{t \le M_i\}} s_{ik}^{(P)}(0)$$

(R) risk factors: differentiating V<sub>i</sub>(t) with respect to a rate referencing period (t<sub>1</sub>,t<sub>2</sub>] would produce a factor of t<sub>2</sub> - t<sub>1</sub> today, or a factor of max{t, t<sub>2</sub>} - max{t, t<sub>1</sub>} at time t

$$s_{ik}^{(R)}(t) = \frac{\max\{t, t_2\} - \max\{t, t_1\}}{t_2 - t_1} \mathbf{1}_{\{t \le M_i\}} s_{ik}^{(R)}(0)$$

• (V) risk factors: calculating the expectation of the future vega sensitivity for a European option results in a linear time decay

$$s_{ik}^{(V)}(t) = \max\left(1 - \frac{t}{T_i}, 0\right) s_{ik}^{(V)}(0)$$

 $- T_i$  can be set to the latest possible option exercise date

### **Dynamics for Portfolio**

• Recall that *market value*  $V_i(t)$  of trade *i* at time *t* is  $V_i(t) = V_i(0|t) + \sum_k s_{ik}(t) [X_k(t) - X_k(0)]$ 

- Now we can calculate  $V_i(0|t)$  and  $s_{ik}(t)$  from the available inputs

- Substituting the dynamics of  $X_k$  and summing across all trades:  $V(t) = V(0|t) + \sum_k s_k(t)\sigma_k w_k(t)$
- The portfolio-level quantities are defined as follows
  - Market value of the portfolio projected forward to time *t*

$$V(0 \mid t) \equiv \sum_{i} V_i(0 \mid t)$$

– Sensitivity of the portfolio market value projected forward to time *t* 

$$s_k(t) \equiv \sum_i s_{ik}(t)$$

17

Expected exposure and exposure at default

#### Exposure

- *Exposure* E(t) of **B** to **C** at time t:  $E(t) = \max \{ V[t_{co}(t)] + TF[t, t_{co}(t)] - VM(t) - IM(t) - IA(t), 0 \}$ 
  - We assume that C defaults at time t, and closeout occurs at time  $t_{co}(t)$
  - We assume that no trade payments are made in time interval  $(t, t_{co}(t)]$
  - TF(t, u) is the value at time t of all trade flows scheduled for interval (t, u]
- Amounts of *margin* available to **B** at time *t* 
  - VM(t): we model VM based on the portfolio market value and thresholds
  - IA(*t*): the schedule of independent amount is known today
  - IM(t): the schedule of initial margin subject to the UMR is unknown
    - we will specify the IM schedule later; for now, we pretend that it is known
- We incorporate TF(t, u) into the "clean P&L"  $\delta \tilde{V}(t, u)$  $\delta \tilde{V}(t, u) \equiv V(u) - V(t) + TF(t, u) \approx \sum_{k} s_{k}(t)\sigma_{k} [w_{k}(u) - w_{k}(t)]$

## **Specifying Variation Margin**

- Assume a generalized two-way VM *agreement* between **B** and **C** 
  - VM *thresholds*:  $H_C \ge 0$  for **C** and  $H_B \le 0$  for **B**
  - *Infinite* threshold for **B** (or **C**) means VM is *never* posted by **B** (or **C**)
- *Exposure* under different scenarios for the portfolio market value
  - $V(t) > H_C$ : **B** is entitled to  $VM(t) = V(t) H_C > 0$  (**B** receives VM)  $E(t) = \max \left\{ H_C + \delta \tilde{V}[t, t_{co}(t)] - IM(t) - IA(t), 0 \right\}$
  - $V(t) < H_B$ : **B** is entitled to  $VM(t) = V(t) H_B < 0$  (**B** posts VM)  $E(t) = \max \left\{ H_B + \delta \tilde{V}[t, t_{co}(t)] - IM(t) - IA(t), 0 \right\}$
  - $H_B \leq V(t) \leq H_C$ : **B** is entitled to VM(t) = 0 (**B** neither posts nor receives)  $E(t) = \max \{ V[t_{co}(t)] + TF[t, t_{co}(t)] - IM(t) - IA(t), 0 \}$
- Note that we assume *zero* minimum transfer amount

## **Specifying Closeout Time**

- We specify the *closeout time* as follows
  - **B** posts or receives non-zero VM:  $t_{co}(t) = t + \delta$ , where  $\delta$  is the **MPoR**
  - **B** neither posts nor receives VM:  $t_{co}(t) = t$  (instantaneous closeout)
- *Exposure* becomes

$$\begin{split} E(t) &= \mathbf{1}_{\{V(t) > H_C\}} \max \left\{ H_C + \delta \tilde{V}(t, t + \delta) - \mathrm{IM}(t) - \mathrm{IA}(t), 0 \right\} \\ &+ \mathbf{1}_{\{V(t) < H_B\}} \max \left\{ H_B + \delta \tilde{V}(t, t + \delta) - \mathrm{IM}(t) - \mathrm{IA}(t), 0 \right\} \\ &+ \mathbf{1}_{\{H_B \le V(t) \le H_C\}} \max \left\{ V(t) - \mathrm{IM}(t) - \mathrm{IA}(t), 0 \right\} \end{split}$$

• We have independent *normally* distributed V(t) and  $\delta \tilde{V}(t,t+\delta)$ :  $V(t) = V(0|t) + \sigma(t)\sqrt{t} X$   $\delta \tilde{V}(t,t+\delta) = \sigma(t)\sqrt{\delta} Z$  $\sigma(t) = \left(\sum_{k}\sum_{l}\rho_{kl}s_{k}(t)s_{l}(t)\sigma_{k}\sigma_{l}\right)^{\frac{1}{2}}$ 

#### **Expected Exposure**

• Calculating the *expectation* of exposure results in

$$\begin{aligned} \mathsf{EE}(t) &= \left(1 - \Phi[d_{C}^{0}(t)]\right) \sigma(t) \sqrt{\delta} \left(d_{C}^{1}(t) \Phi[d_{C}^{1}(t)] + \varphi[d_{C}^{1}(t)]\right) \\ &+ \Phi[d_{B}^{0}(t)] \sigma(t) \sqrt{\delta} \left(d_{B}^{1}(t) \Phi[d_{B}^{1}(t)] + \varphi[d_{B}^{1}(t)]\right) \\ &+ \left(V(0|t) - \mathrm{IM}(t) - \mathrm{IA}(t)\right) \left(\Phi[d_{C}^{0}(t)] - \Phi[\max\{d_{B}^{0}(t), d_{\mathrm{IA}}^{0}(t)]\right) \mathbf{1}_{\{\mathrm{IM}(t) + \mathrm{IA}(t) < H_{C}\}} \\ &- \sigma(t) \sqrt{t} \left(\varphi[d_{C}^{0}(t)] - \varphi[\max\{d_{B}^{0}(t), d_{\mathrm{IA}}^{0}(t)]\right) \mathbf{1}_{\{\mathrm{IM}(t) + \mathrm{IA}(t) < H_{C}\}} \end{aligned}$$

where

$$d_{B,C}^{0}(t) \equiv \frac{H_{B,C} - V(0|t)}{\sigma(t)\sqrt{t}} \qquad d_{IA}^{0}(t) \equiv \frac{IM(t) + IA(t) - V(0|t)}{\sigma(t)\sqrt{t}}$$
$$d_{B,C}^{1}(t) \equiv \frac{H_{B,C} - IM(t) - IA(t)}{\sigma(t)\sqrt{\delta}}$$

## **Projecting initial margin**

- We only know IM subject to the UMR available today (at t=0)
- ▶ The UMR IM is based on 99<sup>th</sup> percentile of the "clean P&L"
  - In a Gaussian model, future IM requirement defined as P&L quantile is proportional to the future P&L volatility and is, therefore, deterministic
- We specify IM forward projection via *scaling* IM(0) by volatility

$$IM(t) = IM(0) \frac{\sigma^{UMR}(t)}{\sigma^{UMR}(0)}$$

where

$$\sigma^{\text{UMR}}(u) = \left(\sum_{k} \sum_{l} \rho_{kl} s_{k}^{\text{UMR}}(u) s_{l}^{\text{UMR}}(u) \sigma_{k} \sigma_{l}\right)^{\frac{1}{2}}$$

and

$$s_k^{\text{UMR}}(u) \equiv \sum_{i \in \text{UMR}} s_{ik}(t)$$

23

### **Exposure at Default**

- Regulators may potentially provide a set of time points  $0 = t_0 < t_1 < ... < t_{N-1} < t_N = 1$  year
- For each time point  $t_n$  from this set, calculate  $EE(t_n)$
- For each time point t<sub>n</sub> from this set, calculate *effective* EE by applying the *non-decreasing constraint* to the EE profile

$$EffEE(t_0) = EE(t_0)$$
$$EffEE(t_n) = \max \left\{ EffEE(t_{n-1}), EE(t_n) \right\}$$

• Calculate EAD as the *time average* of the EffEE profile

$$EAD = \alpha \sum_{n=1}^{N} EffEE(t_n)(t_n - t_{n-1})$$

- If one wants this EAD to be at least as conservative as EAD for the same NS under IMM, the value of  $\alpha$  should be no less than the one used in IMM



## Examples

- To illustrate the performance of the proposed framework, we consider several simple examples covering **IR** and **FX** risks
  - A single interest rate swap
  - A portfolio of short-term FX forward and a long-term cross-currency swap
  - A single bought FX European call option
  - A portfolio of bought FX European call and sold FX European put options
- To facilitate comparisons with SA-CCR, the risk factor volatilities for both the framework and "IMM" are implied by the SA-CCR supervisory factors for IR (0.5%) and FX (4%)

$$\sigma_k = \frac{3}{2} \frac{\mathrm{SF}_k}{\varphi(0)}$$

- BCBS (2014), Foundations of the Standardised Approach for Measuring Counterparty Credit Risk Exposures, August (Working Paper No. 26)

### **Example 1: Interest Rate Swap**

- We consider a 5-year interest rate swap
  - The current term structure of quarterly forward rates is flat at 2%
  - **B** pays floating rate quarterly and receives fixed rate quarterly
    - The values of the fixed rate considered are 1.5% (OTM), 2.0% (ATM), 2.5% (ITM)
- Assumptions for the *proposed* framework
  - Cumulative zero-coupon yields with quarterly tenors as IR risk factors
  - Perfect correlation between the risk factors
  - Absolute volatility of **1.88%** implied by the SA-CCR's IR SF of **0.5%**
  - The floating rate is the discounting rate (for the price and sensitivities)
- Assumptions for "IMM" exposure simulation
  - The short rate that follows driftless geometric Brownian motion
  - Relative volatility of the short rate is: 1.88% / 2% = 94%

### **Interest Rate Swap, EE (Unmargined)**

- Values of the fixed rate: 1.5% (OTM), 2.0% (ATM), 2.5% (ITM)
  - "IMM" exposure is simulated with 5000 paths



## **Interest Rate Swap, EAD (Unmargined)**

• EAD comparison with "**IMM**" and **SA-CCR** 

| Quantity       | R = 1.5% | R = 2.0% | R = 2.5% |
|----------------|----------|----------|----------|
| EAD (proposed) | 1.28%    | 2.17%    | 3.44%    |
| EAD ("IMM")    | 1.00%    | 2.15%    | 3.74%    |
| EAD (SA-CCR)   | 1.31%    | 2.21%    | 4.59%    |

- Reasonable agreement with "IMM" for all cases
  - Agreement would be better for smaller values of the IR volatility
- Good agreement with SA-CCR for the OTM and ATM cases
- SA-CCR overstates EAD for the ITM case (R = 2.5%), as expected
  - The "implied PFE" (defined as EffEPE RC) in the proposed framework and "IMM" decreases as the NS goes deeper ITM, while the PFE under SA-CCR is constant

### **Interest Rate Swap, EE (Margined)**

- Framework **EE** for combinations of VM thresholds for **B** and **C** 
  - VM posted by **B** results in higher EE



## Interest Rate Swap, EAD (Margined)

#### • EAD comparison between the *proposed framework* and **SA-CCR**

| Quantity       | $H_C = \infty$ |                 | $H_{C} = 2\%$ |                 | $H_C = 0$ |                 |
|----------------|----------------|-----------------|---------------|-----------------|-----------|-----------------|
|                | $H_B = 0$      | $H_B = -\infty$ | $H_B = 0$     | $H_B = -\infty$ | $H_B = 0$ | $H_B = -\infty$ |
| EAD (proposed) | 2.48%          | 2.17%           | 1.18%         | 0.86%           | 0.70%     | 0.35%           |
| EAD (SA-CCR)   | 2.21%          | 2.21%           | 2.21%         | 2.21%           | 0.65%     | 0.65%           |

$$\text{EAD}_{\text{margin}}^{\text{SA-CCR}} = \max\left\{V(0) - \text{VM}(0), H_C, 0\right\} + A_{\text{NS}}^{\text{margin}} \cdot \text{Multiplier}\left(\frac{V(0) - \text{VM}(0)}{A_{\text{NS}}^{\text{margin}}}\right)$$

- SA-CCR does not explicitly recognize **B**'s threshold in EAD calculations
  - **B**'s threshold may affect the currently available VM for OTM netting sets (V(0) < 0) and, thus, implicitly enter the PFE multiplier calculations via negative VM(0)
- SA-CCR recognizes C's threshold in a crude and conservative manner, so it has to cap EAD for a margined NS with EAD of the unmargined NS
  - For the case  $H_{\rm C} = 2\%$ , the cap is applied: EAD<sup>SA-CCR</sup><sub>margin</sub> =  $H_{\rm C} + A^{\rm margin}_{\rm swap} = 2\% + 0.65\% = 2.65\%$

## Example 2: CC Swap & FX Forward

- The NS consists of two trades
  - **Cross-currency swap:** remaining maturity  $M_{swap} > 1$  year
    - **B** pays to **C** floating interest rate on USD 110,000
    - **B** receives from **C** floating interest rate on EUR 100,000
    - **B** and **C** exchange notional at maturity
  - **FX forward:** remaining maturity  $M_{\text{fwd}} = 1/16$  year
    - **B** pays to **C** EUR 400,000 at maturity
    - **B** receives from **C** USD 440,000 at maturity
- Assumptions for the *proposed* framework
  - The price of CC swap does not depend on IR (discounting by floating rate)
  - Dependence of the FX forward price on IR is neglected (short maturity)
  - The current EUR/USD exchange rate is equal to 1.10, so that V(0) = 0
  - The relative volatility of the EUR/USD exchange rate is equal to 15%, implied by the SA-CCR's FX SF of 4%

### CC Swap & FX Forward, SA-CCR EAD

- Assuming that the NS is *unmargined*, the EAD under SA-CCR is  $EAD_{un-marg} = (\delta_{swap} MF_{swap} + \delta_{fwd} d_{fwd} MF_{fwd}) SF_{FX}$
- > The components of this calculation are
  - Supervisory factor:  $SF_{FX} = 4\%$
  - Supervisory delta adjustment:  $\delta_{swap} = 1$ ;  $\delta_{fwd} = -1$
  - Adjusted notional:  $d_{swap} = \$110,000; d_{fwd} = \$440,000$
  - Maturity factor:  $MF_{swap} = \sqrt{\min\{M_{swap}, 1\}} = 1$ ;  $MF_{fwd} = \sqrt{\min\{1/16, 1\}} = 1/4$
- Substituting the inputs in the EAD formula, we have  $EAD_{un-marg} = (1 \cdot \$110,000 \cdot 1 + (-1) \cdot \$440,000 \cdot 1/4) \cdot 4\% = \$0$
- EAD of a margined NS is *capped* by the EAD of the otherwise equivalent unmargined NS
  - SA-CCR EAD of this portfolio is *zero* for any margin configuration!

## CC Swap & FX Forward, EE

- Framework **EE** for three levels of  $H_C$ :  $\$\infty$ ; \$5,000; \$0
  - **B** does not post VM in these examples (i.e.,  $H_B \rightarrow -\infty$ )



## CC Swap & FX Forward, EAD

#### • EAD comparison between the *proposed framework* and **SA-CCR**

| Quantity       | $H_B = -\infty$ |                  |           |  |
|----------------|-----------------|------------------|-----------|--|
|                | $H_C = \infty$  | $H_{C} = $5,000$ | $H_C = 0$ |  |
| EAD (proposed) | 5,211           | 2,710            | 1,929     |  |
| EAD (SA-CCR)   | 0               | 0                | 0         |  |

- SA-CCR *caps* the EAD of a margined NS by the EAD of the otherwise equivalent unmargined NS, which is *zero* in this case
- SA-CCR averages exposure contributions of individual trades over time *prior* to aggregation across trades
  - This incorrect order of operations can lead to non-economic results
- The proposed framework performs aggregation of exposure
  contributions across trades and risk factors at each time point

## **Example 3: FX Options**

- **Example 3a:** a single European option bought by **B** from **C** 
  - B bought from C: a European option that gives B a right to exchange USD 110,000 for EUR 100,000 in 5 years
- **Example 3b:** a portfolio of bought and sold European options
  - B bought from C: a European option that gives B a right to exchange USD 110,000 for EUR 100,000 in 5 years
  - B sold to C: a European option that gives C a right to exchange EUR 100,000 for USD 110,000 in 5 years
- Assumptions for the *proposed* framework and "IMM"
  - All interest rates are *zero* in both EUR and USD
  - The current EUR/USD exchange rate is equal to **1.10**
  - Relative volatility of the EUR/USD exchange rate equal to 15% (SA-CCR)
  - European options are priced via the Black-Scholes formula

37

### **EE Calculations under "IMM"**

- All EE calculations under "IMM" are done *analytically* assuming the *risk neutral* probability measure
- **Example 3a:** a single European option bought by **B** from **C** 
  - With zero interest rates, the option price is a *martingale*
  - Since the option price is always *positive*, the EE is equal to the expected market value of the option, which is equal to the option's current value:  $EE(t) = E[max \{V_{option}(t | M), 0\}] = E[V_{option}(t | M)] = V_{option}(0 | M)$

#### • **Example 3b:** a portfolio of bought and sold European options

- This portfolio is equivalent to a *forward*, where **B** and **C** must exchange payments in 5 years: **B** pays USD 110,000 and receives EUR 100,000
- EE(t) for a forward is equal to today's price of an option expiring at time t: EE(t) = E $\left[\max\left\{V_{\text{fwd}}(t | M), 0\right\}\right]$  = E $\left[\max\left\{E_t[N_{\text{EUR}}\text{FX}_{\text{EUR}}(M) - N_{\text{USD}}], 0\right\}\right]$ = E $\left[\max\left\{N_{\text{EUR}}\text{FX}_{\text{EUR}}(t) - N_{\text{USD}}, 0\right\}\right]$  =  $V_{\text{option}}(0 | t)$

## FX Options, EE (Unmargined)

- EE comparison between the *proposed framework* and "IMM"
  - The red curves compare *Bachelier* and *Black-Scholes* option pricing!



## Summary

- While being more risk sensitive than CEM, SA-CCR may lack sufficient risk sensitivity needed for more complex instruments
- The shortcomings of SA-CCR include
  - reliance on regulatory sensitivities (adjusted notional and supervisory delta)
  - mapping of each trade to a single "primary" risk factor
  - compressing the time dimension of exposure prior to trade aggregation
  - crude treatment of VM thresholds
- A more risk sensitive framework for EAD is possible
  - A bank's internal trade value sensitivities to multiple risk factors are used
  - Exposure aggregation across both trades and risk factors is performed for each time point separately; then, averaging over time follows (as in IMM)
  - VM thresholds for both the bank and the counterparty are incorporated in EAD in a risk sensitive manner