Small Population Bias and Sampling Effects in Stochastic Mortality Modelling

Dr Liang Chen, Prof Andrew J.G. Cairns, Dr Torsten Kleinow

Heriot-Watt University, Edinburgh

University College Cork, Ireland

Funded by Actuarial Research Centre, IFoA

Longevity 13, September, 2017

Actuarial Research Centre Institute and Faculty of Actuaries

Why analyse small population

- Experiencing faster mortality improvement, lower interest rate, more pressure on pension funds.
- $\bullet\,$ Most pension schemes are less than 1% of national population.
- Significantly more variability exhibited for mortality rates of small population
- Stochastic models might poorly fit small populations

Motivation

For small population:

- Greater sampling variation of deaths causes increased uncertainty of parameter estimates and high levels of uncertainty on projected mortality rates.
- Diverge between future realized rates and projections, future sampling variation, uncertain projection.

Stochastic Model and Data

• Stochastic Model:

$$\begin{array}{rcl} D(t,x)|\theta_1 & \sim & {\rm Pois}(m(\theta_1,t,x)E(t,x)) \\ m(\theta_1,t,x) & = & -\log(1-q(\theta_1,t,x)) \\ {\rm ogit} \ q(\theta_1,t,x) & = & \kappa_t^{(1)} + \kappa_t^{(2)}(x-\bar{x}) + \kappa_t^{(3)}((x-\bar{x})^2 - \hat{\sigma}_x^2) + \gamma_{t-x}^{(4)} \end{array}$$

- Data: Benchmark exposure $E_0(t, x)$ and corresponding deaths count $D_0(t, x)$ of the males in England and Wales (EW) in the HMD database, during year 1961 to 2011, aged 50-89 last birthday.
- Simulation Method
 - Estimate θ_1 for benchmark population, denoted as $\hat{\theta}_{1,0}$
 - Construct small population $E_w(t, x) = wE_0(t, x)$ for w = 1, 0.1, 0.01, 0.001,
 - (Re-) Simulate $D_w(t,x)|\hat{\theta}_{1,0} \sim \mathsf{Pois}(m(\hat{\theta}_{1,0},t,x)wE_0(t,x))$
 - Estimate θ_1 for $D_w(t,x)$, denoted as $\hat{\theta}_1^w$.

Two-Stage and Bayesian Approaches

- Two-stage approach leads to biased estimates of volatility for small populations
 - Large sampling variation affects latent parameter estimation, with significant noise obscuring the true signal (Cairns et al. 2011)
 - Result in non-negligible bias to the parameter estimation of the projecting model (Chen, Cairns and Kleinow 2016)
 - Over-fit the short cohorts (Cairns et al. 2019)
- Bayesian approach offers a way to avoid or reduce this bias by:
 - Combining the Poisson likelihood with the projecting time series models
 - The estimated latent parameters are restricted to be more like proposed time series models when projecting models dominate while modelling small populations.
 - Using more informative prior distribution with the knowledge of the larger benchmark population.

4/15

- Better estimation for short cohorts.

Prior Distributions

•
$$(\kappa_{t_1}^{(1)},\kappa_{t_1}^{(2)},\kappa_{t_1}^{(3)})\propto 1,$$

•
$$\kappa_t = \kappa_{t-1} + \mu + \epsilon_t$$
 for $t \leq t_2$,

- $\mu = (\mu_1, \mu_2, \mu) \propto 1$,
- $\epsilon_t \sim MVN(0, V_{\epsilon})$, i.i.d there dimensional multi-variate normal distribution independent of t,

• $V_{\epsilon} \sim InverseWishart(\nu, \Sigma)$

- MCMC-Mean: Fix the mean of the prior to $\hat{V}_{\epsilon}^{^{\text{EW}}}$ MCMC-Mode: Fix the mode of the prior to $\hat{V}_{\epsilon}^{^{\text{EW}}}$

•
$$\gamma_c^{(4)} = \alpha_\gamma \gamma_{c-1}^{(4)} + \epsilon_c \text{ for } c > t_1 - x_{n_a}$$

- i.i.d $\epsilon_c \sim N(0, \sigma_\gamma^2)$,
- $\alpha_\gamma \propto (1 - \alpha_\gamma^2)^g \text{ for } |\alpha_\gamma| < 1$,
- $\sigma_\gamma^2 \sim \text{Inverse Gamma } (a_\gamma, b_\gamma)$

•
$$\gamma_{c_1}^{(4)} \sim N(0, rac{\sigma_{\gamma}^2}{1-\alpha_{\gamma}^2})$$

Results Cohort Effects

Results α_{γ}

Results $\kappa^{(1)}$

Dr Liang Chen, Prof Andrew J.G. Cairns, Dr Torsten Kleinow

Results $V_{\epsilon}(1,1)$

Results Projection

Results Survival Index

11/15

Results Longevity Risk of A Temporary Annuity

	i = 4%	i = 2%	i = 1%	<i>i</i> = 0.5%	i = 0%
EW-MCMC	5.27	6.28	6.86	7.16	7.47
<i>j</i> *-MCMC	4.95	5.83	6.33	6.59	6.84
EW-MLE	4.24	5.04	5.50	5.74	5.98
j*-MLE	5.12	6.08	6.59	6.85	7.09

Table: The longevity risk (in percentage) of the temporary annuity.

Results Survival Index

Dr Liang Chen, Prof Andrew J.G. Cairns, Dr Torsten Kleinow

Results Longevity Risk of A Temporary Annuity Deferred by Ten Years

	i = 4%	i = 2%	i = 1%	<i>i</i> = 0.5%	i = 0%
EW-MCMC	7.02	8.14	8.78	9.1	9.45
j*-MCMC	7.23	8.3	8.9	9.23	9.56
EW-MLE	5.50	6.35	6.82	7.06	7.32
j*-MLE	7.57	8.8	9.38	9.77	10.17

Table: The longevity risk (in percentage) of the deferred annuity.

Thank You!

Questions?

astic moreancy modeling

Dr Liang Chen, Prof Andrew J.G. Cairns, Dr Torsten Kleinow

5/15