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Introduction
BT ——

e Reverse mortages involve multiple risks both in in-
surance and financial sectors (e.g. mortality rates,

interest rates, house prices).

e We propose a Bayesian multivariate framework to
price reverse mortgages by extending the univariate

method proposed by Kogure and Kurachi (2010).

e We apply the proposed method to Japanese data to
examine the possibilities for a successuful introduc-

tion of reverese mortgage plans into Japan.



What is a reverse mortgage?

e Mortgage
Cash(=home loan payment) = Asset (=house)

e Reverse mortgae

Asset(=house)=- Cash(=annuity)

4 N

A reverse mortgage is a loan, but the borrower

does not have to repay i1t as long as your live 1n

you home.
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Non-recourse Provision

A typical reverse mortgage is non-recourse:

e At the time t of death the borrower pays out the

loan L;, but not more than the house price H;.

e Thus the payoff of the reverse mortgage provider at
time t is

r

H, L.> H,
L, L, <H,
S Lt — maX(Lt — Ht, O)

/

payoff of put opti/on on house price Ht
with strike price Lt

min(Lt, Ht) - <




Present Value of a Reverse Mortgage

B ———
Consider a cohort of age x at year 0. Let I; denote

number of deaths in year ¢

t =

population at year 0

e Then the per capita cash flow of the reverse mortgage is:

{ (Lt—maX(Lt—Ht,O)) X It,t: 0,1,...,T}‘\
e Its present value is r=discount rate Maximum life
T years

E* |Y e ™ (Ly — max (L; — H,,0)) I

/ t=0

Risk T T
neutral = Z e”""L,E*[I;] — Z e”"'E* [max (L; — H;, 0) I]
expectation i—0 +—0

We assume that discount rate r i1s fixed.



Bayesian approach

e To obtain the present value of the reverese mort-

gage, we need two steps:

1. Statistical modeling of I; and H,
2. Risk-neutralization of I; and H;
e Recently Bayesian methods have been increasingly

used to deal with insurance and finacial risks. How-

ever, their use is mainly limited to step 1.

e In this paper we attempt to achive steps 1 and 2 in

a unified Bayesian framework.



What is the Risk-neutral Pricing?

e X:a value of risk factor one year from now (e.g.

mortality rate, stock price, house price)
e C(X): the payoff of a derivative on X such as

— Put option: C(X) = max(K — X,0); K is a

strike price
e A statistical model for X: {f(x|0),0 € O}

e The risk neutral version of f: f*(x|0) = n(x)f(x|0)

— Price of the derivative

r=discount rate — State price density

L w(0) = e T/C(a:)f*(a:|9)da: J




Risk-neutral Density

- Risk-neutral density
A risk neutral verison of f is given as W
state price density
f* ($|9) — f($|9)’(;($)\‘ (weight function)
/
N y,

e The existence of a positive 7

= ”non-arbitrage”.

e The existence of a unique positive n

= ”completeness”.

In the insurance risk theory, a variety of n(x) are used

e)xaz

E[eAX]

such as Esscher transform: n(x) =



Bayesian Risk-neutral Pricing

e frequentist: replace the unknown 8 by an estimate 9:
Q) = e~ " /C(m)f*(gg;é‘)dm
e Bayesian: Use the posterior density f(8|D) given data D

e /w(@)f(ﬁ]l))d@

e“"'/C(m)/f*(mlﬁ)f(f?ll))dﬁdw
= e_T/C(a:)lf*(aziD)(izr,
where f*(z|D) = | f*(«|6)f(6|D)d0 is the risk-neutral

predictive density.
9



Risk-neutral Predictive Density

(

\-

risk-neutral predictive density

state price density

#*(@|D) = n(x) f(z|D)

where f(xz|D) = [ f(x|0)f(6|D)d0 is the (orig-

inal) predictive density.

\

J

¢ How to determine n(x)?

Candidates : Esscher Transfrom, Wang trans-

form, etc.

e Here we adopt a "nonparametric method” based

on the mimimum cross entropy.

10



Risk-neutral Density based on Cross-entropy (1)
B/ E———

e Assumption (risk-neutrality): Under the risk neutral

predictive density f*(x|D), a moment condition

E*[h(X)] = /h(a:)f*(a:|D)dw —a

holds. For example, when X is the stock price one year

from now, we have

E*[e™" X] = xo(= the current stock price)

e Then use f*(x|D) that minimizes the cross-entropy

| 7*@nos (J;*(ﬁll?))) o

subject to the moment condition. 11




Risk Neutral Density based on Cross-entropy (2)

Risk-neutral Density based on cross-entropy ~

f (x| D) = f(z|D) exp{vo + v1h(z)}

o If h(x) = x, then it reduces to the Esscher

transform.

e If threre are m moment conditions, then
f*(z|D) = f(z|D) exp{vot+v1h1(z)+* - -+¥mhm(z)}

Cf. Stutzer (1996)

12



Bivariate Risk-neutral Density based on Cross-entropy (1)
B/ E———

e Assumption (risk neutrality): Under the bivariate
risk neutral predictive density f*(x,y|D), we have

moment conditions:

(X Y)] = [ [hGe,u)f @ y|D)dzdy = a,

i=1,2,--+,m

e Then, subject to the moment conditions and the
condition that f*(x,y|D) integrates to 1, we use

f*(x,y|D) which minimizes the cross entropy

[ [ s (G2 e
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Bivariate Risk-neutral Density based on Cross-entropy (2)

Bivariate Risk-neutral density based on cross-entropy

f*(x,y|D) = f(x,y|D) exp{vo+v1h1(z,y)+- - -+¥Ymhm(z,y)}

e In general, the independence of X and Y under f does

not imply the same under f*.

e However, this will be true if each h; is additive:

hi(way) — hzl(w) + hz'2(y)’ t=1,2,...,m

14



Present value of reverse mortgage
B E—— .

We assume that

e the death ratio I; and the house price H; are indepen-
dent under f.

e there 1s no financial product which depends on both H;

and I;.
Then I, and H; are also independent under f*, and thus:
4 . N
The present value of reverese mortgages 1s
T
= ) e "'L,E*[L] - Z e "' E*[I,JE*[max (L — Hy, 0)],
t=0 t=0
\_ where E* is the expectation under f* .

= It suffices to calculate E*[I;] and E* [max (L; — Hy, 0)] seper-

ately
15



Evaluation of E*[I.]: Modeling Mortality Risk

Hereafter I, 1s taken to be:

I, = the probability that an individual aged « at year 0

dies In year
— tpmqq:+t(t) — tPx — t+1Px>

where

e .p. is the probability he/she is still alive at year t:
tPe = (1 — q2(0)) X - -+ X (1 — goyt—1(2 — 1))

e ¢.(%) is an individual aged x at year t will die within

oIlec ycar.

= It suffices to model q.(%).

16



Lee-Carter method

e Lee-Carter model ~

Force of mortality of an individual aged = at year t:

P
Moo (t) — €exp (am + Z ﬂimﬁit)

1=1
® (,: age parameter

® k;t: tth year factor

\_ @ Piax: sensitivity parameter in response to K;; )

e Typically, one-factor L-C model (p = 1) is used.

e Here two-factor L-C model (p = 2) is also considered.
Cf. Renshaw and Haberman (2005) and Lazer and De-
nuit (2009)

17



One-factor Lee-Carter model

Statistical model for central death rates:

D, # of dead aged x at year ¢

m =
wt Ey mid-year population of age « at year ¢

State-space modeling of one-factor L-C model
/— P g

e observation equation: / In pig (1)

vl Y
Inmgz = o+ Bkt + €xt

iid
ezt ~ IN(O, oz)

e state equation:

Kt = A+ Ki—1+ wy
\_ temporal changes )

18




Bayesian estimation of Lee-Carter model

EE————
e The parameters are
2 2
Az P, O, A, g,
— red=Normal distribution

— blue=INverse Gamma distribution

e We use the MCMC method to derive predictive dis-

tribution.

e Data sets

Japan’s population Data for male and female

ages : 65-98; years : 1970-2005
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Evaluation of E*[1,]:

MCMC sampling results
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MCMC sampling results (basic statistics)
EEET ] E—

male
Posterior mean  Posterior sd 95%HPD Geweke
s -4.0067 0.0105 (-4.0270, -3.9858) 0.97
o 0.0329 0.0015 (0.0299, 0.0358) 0.42
K970 12.302 0.3299 (11.6891, 12.9763) 0.09
K005 -9.7325 0.3253 (-10.3521, -9.0798) 0.58
female
Posterior mean  Posterior sd 95%HPD Geweke
s -4.7484 0.0092 (-4.7669, -4.7310) 0.18
D 0.0305 0.0008 (0.0289, 0.0321) 0.14
K970 17.7812 0.2966 (17.1937, 18.3509) 0.13

K005 -16.2597 0.2938 (-16.8414, -15.6887) 0.42
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Risk-neutralization of Predictive Distribution of .p,

e (Generate N independent sample paths distributed as

(1pm, 2Pz« o - 7Tp33) :

p;(cj) — (1p;(nj)a2p§3j)a° “an;(Bj)) ’ 3 — 1923°"7N

e Comnsider a simple annuity that pays $1 for 1 < ¢t <

T and set the moment condition on the risk neutral

distribution 7* over {p\¥)} to be :

- market value of the

N - -
: annuity (given)
E U a,g e amarket

expectation of /3’=1 p

a, 0 under m* 4

T
ag) — Z B_Tttpg)
t=1
— present value of the annuity given ;p{)

22



Bayesian Risk-neutral Density of p,

- Bayesian risk neutral predictive distribution ~

. _ _ exp{yal’}

i T &N G\’
Zj:1 exXp {'70133 }
for  =1,2,...,N

where v is determined to satisfy:

market
Gy, — :
E;V:1 exp {'}’agﬁ?)}
Yaarket value of the Y,

annuity (given)

23



E*[l.]: cohort of age 65

male female
= ] =
= —_ k ki = —_ k 4
phy 1 phy 1
S s
(=] =
s | g
(] o

0.00

0 5 10 15 20 25 0 5 10 15 20 25

t t

E*[I;] (solid line) and E[I;] (dotted line)
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Evaluation of of E*[max(L.-H,, 0)]

The PV of the reverese mortgage cash tow
— &% —

T T

t=0 t=0

.

Y e " LE[L]-) e "E*[I]JE*[max (L; — Hy,0)]

y

=
Now we evaluate E* [max (L; — Hy, 0)]

25



House Price data: Case-Shiller Indices
BT ——

S&P/Case-Shiller Home Price Indices for Japan as
well as US (1993.06-2008.12)

Ljpc
_ OO
-\H'\\.
'\-\.\x‘.
N
K-\.
LY
R _
Japan

26



Modeling house prices

Let h; be the logarithm of the house price H; and as-

sume that h; follows a local level model:

e local level model ~N
h: = pe+ve, ve~N(0,V)
pe = pe—1+we, we~ N0, W)

- /

where V and W are distributed as inverse Gamma dis-

tributions.
o V ~ IG(aha/Bh)
o W ~ IG(O&H, JBIJ)

Here we set ap, = B, = 0.001, o, = 0.1,3,, = 0.01

27



Risk-neutralization of predictive distribution for Ht
B E—— .

e Generate IN independent sample paths distributed
asS (hl, hz, c oo hT).

R — (hgj),hgj),...,h?)) j=1,2,...,N

e For m* on {hij)} to be risk neutral we impose the

momnet condition
N .
d(t) Y 7w H”) = Ho,t = Tz,...,T
J=1

with HY) = eht” the current house price

28



Evaluation of E*[max(Lt-Ht,0)]

We set

e the curent house price : Hy = 40(million yen)
e the loan at year 0 : Ly = 20(million yen)

e the loan at year ¢t : L; = Lge!

e loan rates : u = 0.04,0.05,0.06

e discount rate : r = 0.015

29



1 millicen yen

E*[max(Lt-Ht,0)]:

B I——.—..
Loy = 20,u = 0.04 Lo =20,u = 0.05

o -
= — EQ[max (Lt-Ht,0)] , — EQ[max (Lt-Ht,0)]
- EP[max (Lt-Ht,[0)] N --- EP[max(Lt-Ht,0)]
I
o
[¥s)
o —
(s8]
o
0]
Sy
I
o _
- -
o _| — =
o 3
£
—
(@]
- _| o
—
o — - —
T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
t t

Solid line: risk neutral and dotted line: original
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Evaluation of Reverse Mortgages in Japan

In addition to

e the curent house price : Hy = 40(million yen)
e the loan at year 0 : Ly = 20(million yen)
e the loan at year ¢t : L; = LgeY!

e loan rates : u = 0.04,0.05,0.06

e discount rate : r = 0.015

we set

e age at year 0:x = 65,70,75, 80,
e maximum life years : T =98 — x — 1

31



Evaluation of Reverse Mortgages in Japan (u=4%)

PV of reverse mortgage:

T

T

S e LE L] — S e B [L]E [max (L, — Hy, 0)],

t=0

t=0

whose value should be no less than Lg(=20)

HO — 40, LO — 20,

r = 0.015, v = 0.04

male female
x | Risk-neutral Physical || Risk-neutral Physical
65 27.60459 26.28193 20.18924 25.90555
70 25.34564 25.63689 19.12708 25.89425
75 24.26313 24.34514 20.07780 25.02251
80 21.93222 22.49217 19.11508 23.23801
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Evaluation of Reverse Mortgages in Japan (u=5%)

PV of reverse mortgage:

Ho = 40, Lo = 20,7 = 0.015,u = 0.05

male female
x | Risk-neutral Physical || Risk-neutral Physical
65 30.56589 27.68048 22.32114 26.92601
70 28.13248 27.31018 21.3044 27.35481
75 26.88519 26.11497 22.40625 26.85644
80 23.85832 24.07022 21.01858 25.07722

PV of reverse mortgage should be no less than Ly = 20

33



Evaluation of Reverse Mortgages in Japan (u=6%)
B/ E———

PV of reverse mortgage:

Ho = 40, Lo = 20,7 = 0.015,u = 0.06

male female
x | Risk-neutral Physical || Risk-neutral Physical
65 32.43857 28.50989 23.54640 27.4126
70 30.10885 28.43035 22.71018 28.15926
75 29.03342 27.47149 24.18518 28.08092
80 25.70015 25.48779 22.78073 26.61531

PV of reverse mortgage should be no less thanLgy = 20.

34



Two-factor Lee-Carter model

EE——
s Two-factor Lee-Carter model ~N

e Observation equation

Inmg; = oz + Brzkit + BazKat + €ty

Ext 1"1‘51 N(Oa Ug)
e State equation

{nlt = A1 + K1,e—1 + wie,  wie ~ N(O, 0'3,1)

Kot = Ao + ¢fi2,t—1 + Wat, Wat " N(O, 0'32)

\ \ y

\

cyclical changés (|P|<1)

35



Estimated Parameters of Two-factor Lee-Carter Model (male)
B/ E———

"B1e Boy -

0.0300

0.0290

0.0280

1980 2000 200 2040 2060 1980 2000 2020 2040 2060 36



Evaluation of E*[l,]: age 65 male

one-factor model two-factor model

— risk J—

---- physical

E*[I;] (solid line) and E[I;] (dotted line)

Little difference between the models
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Evaluation of E*[l,]: age 65 female

one-factor model two-factor model

0 5 10 15 20 25 30

E*[I;] (solid line) and E[I] (dotted line)

Some difference between the models !
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One-factor vs. Two-factor (u=4%)

PV of reverse mortgage:

T

t=0

whose value should be no less than Lg(=20)

HO - 4:0, LO R 20,

T
L] 3 T s (1 0]
t=0

r = 0.015, v = 0.04

male

one-factor

two-factor

female

one-factor

two-factor

65 27.60459 27.37908 20.18924 29.28988
70 25.34564 26.21647 19.12708 27.30318
75 24.26313 24.16739 20.07780 25.09417
80 21.93222 21.84386 19.11508 22.75158
" A
no change large iﬁcrease
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One-factor vs. Two-factor (u=5%)
[ ., |

PV of reverse mortgage

Hy = 40, Lo = 20,7 = 0.015,u = 0.05

female

male

@ One-factor Two-ftactor || One-factor Two-factor

65 30.56589 30.30559 22.32114 32.58761
70 28.13248 29.08291 21.30440 30.36296
75 26.88519 26.61771 22.40625 27.66275
80 23.85832 23.63987 21.01858 24.65523

no change

large increase
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One-factor vs. Two-factor (u=6%)
[ ., |

PV of reverse mortgage:

Hy = 40, Lo = 20,7 = 0.015,u = 0.06

male

One-factor

Two-factor

female

One-factor

Two-factor

65
70
75
80

32.43857
30.10885
29.03342
25.70015

32.17907
31.19492
28.70905
25.37896

23.54640
22.71018
24.18518
22.78073

34.80077
28.15926
29.90626
26.50773

no change

A
1

large increase
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Conclusions
[ ., |

e We proposed a multivariate Bayesian risk neutral method
to evaluate reverse mortgages involving mortality risk and

house price risk.

e We used one-factor and two-factor Lee-Carter models for
mortality risk and a local level model for house price risk

to derive present values of reverse mortgage plans.
e The results indicate
— siginificant possibilities for a successuful introduction

of reverse mortgages in Japan.

— the use of two-factor Lee-Carter model increases the
possibilities for female cohorts.
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