Longevity 8 @University of Waterloo, Canada Session III:11:00-12:30, 8 September, 2012

Pricing Reverse Mortgages in Japan Using

a Multivariate Bayesian Risk-neutral Method

by

Atsuyuki Kogure Keio University, Japan

Jackie Li Nanyang Technological University, Singapore

Shinichi Kamiya Nanyang Technological University, Singapore

1

The financial support from SCOR is greatly acknowledged.

- Reverse mortages involve multiple risks both in insurance and financial sectors (e.g. mortality rates, interest rates, house prices).
- We propose a Bayesian multivariate framework to price reverse mortgages by extending the univariate method proposed by Kogure and Kurachi (2010).
- We apply the proposed method to Japanese data to examine the possibilities for a successuful introduction of reverese mortgage plans into Japan.

What is a reverse mortgage?

- Mortgage $Cash(=home \ loan \ payment) \Rightarrow Asset \ (=house)$
- Reverse mortgae $Asset(=house) \Rightarrow Cash(=annuity)$

A reverse mortgage is a loan, but the borrower does not have to repay it as long as your live in you home.

Non-recourse Provision

A typical reverse mortgage is non-recourse:

- At the time t of death the borrower pays out the loan L_t , but not more than the house price H_t .
- Thus the payoff of the reverse mortgage provider at time t is

$$\min(L_t, H_t) = egin{cases} H_t & L_t \geq H_t \ L_t & L_t \leq H_t \ = & L_t - \max(L_t - H_t, 0) \ & & & \ & \$$

Present Value of a Reverse Mortgage

Consider a cohort of age x at year 0. Let I_t denote

$$I_t \equiv rac{\text{number of deaths in year } t}{\text{population at year } 0}$$

Then the per capita cash flow of the reverse mortgage is:

$$\{ (L_t - \max(L_t - H_t, 0)) \times I_t, t = 0, 1, \dots, T \}_{r}$$
• Its present value is
$$\mathbf{F} = \mathbf{I} = \mathbf{I} \begin{bmatrix} T \\ t = 0 \end{bmatrix} \begin{bmatrix} T \\ T \\ t =$$

We assume that discount rate r is fixed.

R

- To obtain the present value of the reverese mortgage, we need two steps:
 - 1. Statistical modeling of I_t and H_t
 - 2. Risk-neutralization of I_t and H_t
- Recently Bayesian methods have been increasingly used to deal with insurance and finacial risks. However, their use is mainly limited to step 1.
- In this paper we attempt to achive steps 1 and 2 in a unified Bayesian framework.

What is the Risk-neutral Pricing?

- X: a value of risk factor one year from now (e.g.⁻ mortality rate, stock price, house price)
- C(X): the payoff of a derivative on X such as
 - Put option: $C(X) = \max(K X, 0); K$ is a strike price
- A statistical model for X: $\{f(x|\theta), \theta \in \Theta\}$
- The risk neutral version of f: $f^*(x|\theta) = \eta(x)f(x|\theta)$

r=discount rate $\pi(\theta) = e^{-r} \int C(x) f^*(x|\theta) dx$ State price density

Risk-neutral Density

Risk-neutral density

A risk neutral verison of f is given as

$$f^*(x| heta) = f(x| heta) \check{\eta}(x)$$

state price density (weight function)

- The existence of a positive η \Rightarrow "non-arbitrage".
- The existence of a unique positive η \Rightarrow "completeness".

In the insurance risk theory, a variety of $\eta(x)$ are used such as Esscher transform: $\eta(x) = \frac{e^{\lambda x}}{E[e^{\lambda X}]}$

Bayesian Risk-neutral Pricing

• frequentist: replace the unknown θ by an estimate $\hat{\theta}$:

$$\pi(\widehat{ heta}) = e^{-r} \int C(x) f^*(x|\widehat{ heta}) dx$$

• Bayesian: Use the posterior density $f(\theta|D)$ given data D

$$egin{array}{rl} \widetilde{\pi} &=& \displaystyle \int \pi(heta)f(heta|D)d heta \ &=& e^{-r}\int C(x)\int f^*(x| heta)f(heta|D)d heta dx \ &=& e^{-r}\int C(x)f^*(x|D)dx, \end{array}$$

where $f^*(x|D) \equiv \int f^*(x|\theta) f(\theta|D) d\theta$ is the risk-neutral predictive density.

Risk-neutral Predictive Density

risk-neutral predictive density

$$f^*(x|D) = \eta(x)f(x|D)$$

where $f(x|D) = \int f(x|\theta)f(\theta|D)d\theta$ is the (orig-
inal) predictive density.

- How to determine η(x)?
 Candidates : Esscher Transfrom, Wang transform, etc.
- Here we adopt a "nonparametric method" based on the mimimum cross entropy.

Risk-neutral Density based on Cross-entropy (1)

• Assumption (risk-neutrality): Under the risk neutral predictive density $f^*(x|D)$, a moment condition

$$\mathrm{E}^*[h(X)] \equiv \int h(x) f^*(x|D) dx = a$$

holds. For example, when X is the stock price one year from now, we have

$$\mathrm{E}^*[e^{-r}X] = x_0 (= \mathrm{the \ current \ stock \ price})$$

• Then use $f^*(x|D)$ that minimizes the cross-entropy

$$\int f^*(x) \log\left(rac{f^*(x|D)}{f(x|D)}
ight) dx$$

subject to the moment condition.

Risk Neutral Density based on Cross-entropy (2)

Risk-neutral Density based on cross-entropy -

$$f^*(x|D)=f(x|D)\exp\{\gamma_0+\gamma_1h(x)\}$$

- If h(x) = x, then it reduces to the Esscher transform.
- If threre are m moment conditions, then

 $f^*(x|D)=f(x|D)\exp\{\gamma_0+\gamma_1h_1(x)+\cdots+\gamma_mh_m(x)\}$

Cf. Stutzer (1996)

Bivariate Risk-neutral Density based on Cross-entropy (1)

• Assumption (risk neutrality): Under the bivariate risk neutral predictive density $f^*(x, y|D)$, we have moment conditions:

$$egin{array}{rl} \mathrm{E}^*[h_i(X,Y)] &\equiv & \displaystyle{\int\int h(x,y) f^*(x,y|D) dx dy = a_i} \ & i=1,2,\cdots,m \end{array}$$

• Then, subject to the moment conditions and the condition that $f^*(x, y|D)$ integrates to 1, we use $f^*(x, y|D)$ which minimizes the cross entropy

$$\int \int f^*(x,y|D) \log\left(rac{f^*(x,y|D)}{f(x,y|D)}
ight) dxdy.$$

Bivariate Risk-neutral Density based on Cross-entropy (2)

- Bivariate Risk-neutral density based on cross-entropy -

$$f^*(x,y|D) = f(x,y|D) \exp\{\gamma_0 + \gamma_1 h_1(x,y) + \cdots + \gamma_m h_m(x,y)\}$$

- In general, the independence of X and Y under f does not imply the same under f^* .
- However, this will be true if each h_i is additive:

$$h_i(x,y) = h_{i1}(x) + h_{i2}(y), \ i = 1, 2, \dots, m$$

Present value of reverse mortgage

We assume that

- the death ratio I_t and the house price H_t are independent under f.
- there is no financial product which depends on both H_t and I_t .

Then I_t and H_t are also independent under f^* , and thus:

The present value of reverese mortgages is

$$= \sum_{t=0}^{T} e^{-rt} L_t \mathbf{E}^*[I_t] - \sum_{t=0}^{T} e^{-rt} \mathbf{E}^*[I_t] \mathbf{E}^*[\max(L_t - H_t, 0)],$$
where \mathbf{E}^* is the expectation under f^*

 $\Rightarrow \text{It suffices to calculate } \mathbf{E}^*[I_t] \text{ and } \mathbf{E}^*[\max\left(L_t - H_t, 0\right)] \text{ seperately}$ ately

Evaluation of $E^*[I_t]$: Modeling Mortality Risk

Hereafter I_t is taken to be:

 I_t = the probability that an individual aged x at year 0 dies in year t

$$= t p_x q_{x+t}(t) = t p_x - t + 1 p_x,$$

where

- $_t p_x$ is the probability he/she is still alive at year t: $_t p_x = (1 - q_x(0)) \times \cdots \times (1 - q_{x+t-1}(t-1))$
- $q_x(t)$ is an individual aged x at year t will die within one year.
- \Rightarrow It suffices to model $q_x(t)$.

- Typically, one-factor L-C model (p = 1) is used.
- Here two-factor L-C model (p = 2) is also considered.
 Cf. Renshaw and Haberman (2005) and Lazer and Denuit (2009)

One-factor Lee-Carter model

Statistical model for central death rates: $\overline{\overline{\cdot}}$

Bayesian estimation of Lee-Carter model

- The parameters are
 - $\ lpha_{oldsymbol{x}}, \ eta_{oldsymbol{x}}, \ oldsymbol{\sigma}_{oldsymbol{arepsilon}}^2, \ oldsymbol{\lambda}, \ oldsymbol{\sigma}_{\omega}^2$
 - red=Normal distribution
 - blue=INverse Gamma distribution
- We use the MCMC method to derive predictive distribution.
- Data sets

Japan's population Data for male and female ages : 65-98; years : 1970-2005

Evaluation of E*[I_t]: MCMC sampling results

male

Kappa2005

Step Number

Step Number

Kappa2005

Kappa1970

Step Number

female

MCMC sampling results (basic statistics)

male				
	Posterior mean	Posterior sd	95%HPD	Geweke
$lpha_{65}$	-4.0067	0.0105	(-4.0270, -3.9858)	0.97
$eta_{_{65}}$	0.0329	0.0015	(0.0299, 0.0358)	0.42
K ₁₉₇₀	12.302	0.3299	(11.6891, 12.9763)	0.09
K ₂₀₀₅	-9.7325	0.3253	(-10.3521, -9.0798)	0.58

female

	Posterior mean	Posterior sd	95%HPD	Geweke
$lpha_{65}$	-4.7484	0.0092	(-4.7669, -4.7310)	0.18
$eta_{_{65}}$	0.0305	0.0008	(0.0289, 0.0321)	0.14
K ₁₉₇₀	17.7812	0.2966	(17.1937, 18.3509)	0.13
K ₂₀₀₅	-16.2597	0.2938	(-16.8414, -15.6887)	0.42

Risk-neutralization of Predictive Distribution of tpx

• Generate N independent sample paths distributed as $(_1p_x, _2p_x, \ldots, _Tp_x)$:

$$p_x^{(j)} = \left({_1}p_x^{(j)}, {_2}p_x^{(j)}, \dots, {_T}p_x^{(j)} \right), \quad j = 1, 2, \dots, N$$

• Consider a simple annuity that pays \$1 for $1 \leq t \leq T$ and set the moment condition on the risk neutral distribution π^* over $\{p_x^{(j)}\}$ to be :

Bayesian Risk-neutral Density of tpx

$E^{*}[I_t]$: cohort of age 65

male

 $\mathbf{E}^*[\mathbf{I}_t]$ (solid line) and $\mathbf{E}[\mathbf{I}_t]$ (dotted line)

Evaluation of of $E^{*}[max(L_t-H_t, 0)]$

 \Rightarrow

Now we evaluate $\mathbf{E}^* [\max (L_t - H_t, 0)]$

House Price data: Case-Shiller Indices

S&P/Case-Shiller Home Price Indices for Japan as well as US (1993.06-2008.12)

Modeling house prices

Let h_t be the logarithm of the house price H_t and assume that h_t follows a local level model:

- local level model -

$$egin{array}{rcl} h_t &=& \mu_t + v_t, & v_t \sim N(0,V) \ \mu_t &=& \mu_{t-1} + w_t, & w_t \sim N(0,W) \end{array}$$

where V and W are distributed as inverse Gamma distributions.

- $V \sim IG(\alpha_h, \beta_h)$
- $W \sim IG(\alpha_{\mu}, \beta_{\mu})$

Here we set $\alpha_h = \beta_h = 0.001, \, \alpha_\mu = 0.1, \beta_\mu = 0.01$

Risk-neutralization of predictive distribution for Ht

• Generate N independent sample paths distributed as (h_1, h_2, \ldots, h_T) .

$$h^{(j)} = \left(h_1^{(j)}, h_2^{(j)}, \dots, h_t^{(j)}
ight), j = 1, 2, \dots, N$$

• For π^* on $\{h_t^{(j)}\}$ to be risk neutral we impose the momnet condition

$$d(t)\sum_{j=1}^N \pi_j^* H_t^{(j)} = H_0, t = 1, 2, \dots, T$$

with $H_t^{(j)} \equiv e^{h_t^{(j)}}$ the current house price

We set

- the current house price : $H_0 = 40$ (million yen)
- the loan at year $0: L_0 = 20$ (million yen)
- the loan at year $t: L_t = L_0 e^{ut}$
- loan rates : u = 0.04, 0.05, 0.06
- discount rate : r = 0.015

E*[max(Lt-Ht,0)]:

$$L_0 = 20, u = 0.04$$

 $L_0=20, u=0.05$

Solid line: risk neutral and dotted line: original

Evaluation of Reverse Mortgages in Japan

In addition to

- the current house price : $H_0 = 40$ (million yen)
- the loan at year $0: L_0 = 20$ (million yen)
- the loan at year $t : L_t = L_0 e^{ut}$
- loan rates : u = 0.04, 0.05, 0.06
- discount rate : r = 0.015

we set

- age at year 0:x = 65, 70, 75, 80,
- maximum life years : T = 98 x 1

Evaluation of Reverse Mortgages in Japan (u=4%)

PV of reverse mortgage:

$$\sum_{t=0}^{T} e^{-rt} L_t \mathbf{E}^*[I_t] - \sum_{t=0}^{T} e^{-rt} \mathbf{E}^*[I_t] \mathbf{E}^*[\max(L_t - H_t, 0)],$$

whose value should be no less than $L_0(=20)$

$H_0 = 40, L_0 = 20, r = 0.015, u = 0.04$					
	male		female		
\boldsymbol{x}	$\mathbf{Risk} ext{-neutral}$	Physical	Risk-neutral	Physical	
65	27.60459	26.28193	20.18924	25.90555	
70	25.34564	25.63689	19.12708	25.89425	
75	24.26313	24.34514	20.07780	25.02251	
80	21.93222	22.49217	19.11508	23.23801	

Evaluation of Reverse Mortgages in Japan (u=5%)

PV of reverse mortgage:

$H_0 = 40, L_0 = 20, r = 0.015, u = 0.05$					
	male		female		
\boldsymbol{x}	$\mathbf{Risk} ext{-neutral}$	Physical	Risk-neutral	Physical	
65	30.56589	27.68048	22.32114	26.92601	
70	28.13248	27.31018	21.3044	27.35481	
75	26.88519	26.11497	22.40625	26.85644	
80	23.85832	24.07022	21.01858	25.07722	

PV of reverse mortgage should be no less than $L_0 = 20$

Evaluation of Reverse Mortgages in Japan (u=6%)

PV of reverse mortgage:

$H_0 = 40, L_0 = 20, r = 0.015, u = 0.06$					
	male		female		
\boldsymbol{x}	$\mathbf{Risk} ext{-neutral}$	Physical	Risk-neutral	Physical	
65	32.43857	28.50989	23.54640	27.4126	
70	30.10885	28.43035	22.71018	28.15926	
75	29.03342	27.47149	24.18518	28.08092	
80	25.70015	25.48779	22.78073	26.61531	

PV of reverse mortgage should be no less than $L_0 = 20$.

Two-factor Lee-Carter model

Two-factor Lee-Carter model-

• Observation equation

$$egin{array}{rcl} \ln m_{xt} &=& lpha_x + eta_{1x} \kappa_{1t} + eta_{2x} \kappa_{2t} + \epsilon_{xt}, \ && arepsilon_{xt} \stackrel{ ext{iid}}{\sim} N(0, \sigma_arepsilon^2) \end{array}$$

• State equation

$$\begin{cases} \kappa_{1t} = \lambda_1 + \kappa_{1,t-1} + \omega_{1t}, & \omega_{1t} \sim N(0,\sigma_{\omega_1}^2) \\ \kappa_{2t} = \lambda_2 + \phi \kappa_{2,t-1} + \omega_{2t}, & \omega_{2t} \sim N(0,\sigma_{\omega_2}^2) \end{cases}$$

cyclical changes $(|\Phi|<1)$

Estimated Parameters of Two-factor Lee-Carter Model (male)

Evaluation of $E^*[I_t]$: age 65 male

one-factor model

two-factor model

 $\mathbf{E}^*[I_t]$ (solid line) and $\mathbf{E}[I_t]$ (dotted line)

Little difference between the models

Evaluation of E*[I_t]: age 65 female

one-factor model

two-factor model

 $\mathbf{E}^*[\mathbf{I}_t]$ (solid line) and $\mathbf{E}[\mathbf{I}_t]$ (dotted line)

Some difference between the models !

One-factor vs. Two-factor (u=4%)

PV of reverse mortgage:

$$\sum_{t=0}^{T} e^{-rt} L_t \mathbf{E}^*[I_t] - \sum_{t=0}^{T} e^{-rt} \mathbf{E}^*[I_t] \mathbf{E}^*[\max(L_t - H_t, 0)],$$

whose value should be no less than $L_0(=20)$

	$H_0 = 40, L_0 = 20, r = 0.015, u = 0.04$					
	male		female			
\boldsymbol{x}	one-factor	two-factor	one-factor	two-factor		
65	27.60459	27.37908	20.18924	29.28988		
70	25.34564	26.21647	19.12708	27.30318		
75	24.26313	24.16739	20.07780	25.09417		
80	21.93222	21.84386	19.11508	22.75158		
				∧ 		
no change		large i	ncrease			

39

PV of reverse mortgage

	110 - 10, 10 - 20, 1 - 0.010, a - 0.000				
	male		female		
\boldsymbol{x}	One-factor	Two-factor	One-factor	Two-factor	
65	30.56589	30.30559	22.32114	32.58761	
70	28.13248	29.08291	21.30440	30.36296	
75	26.88519	26.61771	22.40625	27.66275	
80	23.85832	23.63987	21.01858	24.65523	

 $H_0 = 40, L_0 = 20, r = 0.015, u = 0.05$

PV of reverse mortgage:

110 - 10, 10 - 20, 7 - 0.010, u - 0.00				
	male		female	
\boldsymbol{x}	One-factor	Two-factor	One-factor	Two-factor
65	32.43857	32.17907	23.54640	34.80077
70	30.10885	31.19492	22.71018	28.15926
75	29.03342	28.70905	24.18518	29.90626
80	25.70015	25.37896	22.78073	26.50773

 $H_0 = 40, L_0 = 20, r = 0.015, u = 0.06$

Conclusions

- We proposed a multivariate Bayesian risk neutral method to evaluate reverse mortgages involving mortality risk and house price risk.
- We used one-factor and two-factor Lee-Carter models for mortality risk and a local level model for house price risk to derive present values of reverse mortgage plans.
- The results indicate
 - siginificant possibilities for a successuful introduction of reverse mortgages in Japan.
 - the use of two-factor Lee-Carter model increases the possibilities for female cohorts.

References

- Chen, H., Cox, S.H. and Wang, S.W. (2010). Is the HECM program Sustainable? Evidence from Pricing Mortgage Insurance Premiums and Non-Recourse Provisions Using Conditional Esscher Transform. Insurance Mathematics and Economics 46, 371-384.
- Denuit, M., P. Devolder, Goderniaux, A., (2007). Securitization of longevity risk: Pricing survivor bonds with Wang transform in the Lee-Carter framework. Journal of Risk and Insurance 74, 87– 113.
- Gerber, H. U., Shiu E. S. W., (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries 46, 99-191.
- Kogure, A., Fushimi, T. and Takamatsu, Y. (2012). A Bayesian multifactor Lee-Carter model toward evaluating longevity risk. Presented to the 2012 APRIA annual meeting.
- Kogure, A., Kitsukawa, K. and Kurachi, Y. (2009). A Bayesian comparison of models for changing mortalities toward evaluating longevity risk in Japan. Asia-Pacific Journal of Risk and Insurance 3, 1-22.
- Kogure, A. and Y. Kurachi, (2010). A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions. *Insurance Mathematics and Economics* 46, 162–172.

- Lazer, D. and M. M. Denuit.(2009) A multivariate time series approach to projected life tables. *Appied. Stochastic Models in Business and Industry*, 25, 806–823
- Lee, R.D. and Carter, L.R. (1992). Modeling and forecasting U.S. mortality, Journal of the American Statistical Association 87, 659–675.
- Pedroza, C. (2006). A Bayesian forecasting model: predicting U.S. male mortality. *Biostatistics* 7, 530–550.
- Renshaw A.E. and Haberman S.(2005). Lee Carter mortality forecasting incorporating bivariate time series for England and Wales mortality projections. *City University Actuarial Research Paper* 163, 2005.
- Stutzer, M. (1996), A simple nonparametric approach to derivative security valuation, *The Journal of Finance*, 51, 1633–1652.
- Wang, S. (2000). A class of distortion operators for pricing financial and insurance risks. *Journal of Risk and Insurance* 67, 15–36.