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Abstract
 When the number of deaths follows a Cox 

process, this paper provides an iterative fitting 
algorithm to generate maximum likelihood 
estimates under the Cox regression model and 
employs the non-Gaussian distributions to model 
the residuals of the Renshaw and Haberman 
(2006) model. 

 With mortality data of Finland, France, Italy and 
the Netherlands over the period 1900–2007, both 
in-sample model selection criteria and out-of-
sample projection errors indicate a preference for 
modeling the Renshaw and Haberman (2006) 
model with non-Gaussian innovations.
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Introduction

 An improvement to the Lee-Carter 
model is to model the number of deaths
as a Poisson model commonly employed 
in the literature on mortality modeling 

(see, for example, Wilmoth, 1993; Brouhns et al., 
2002; Renshaw and Haberman, 2006; Cairns 
et al., 2009; Haberman and Renshaw, 2009)
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Introduction
 Instead of using Poisson model with 

deterministic intensity function, an alternative 
means of fitting the number of deaths is to 
specify a doubly stochastic Poisson process, also 
known as Cox process (Cox, 1955), to catch the 
stochastic intensity property.

 This paper provides an iterative fitting algorithm
for estimating the Cox regression model under 
which mortality rates adhere to the RH model 
with non-Gaussian innovations.
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The Stochastic Mortality Models 
with Cox Error Structures

 Renshaw and Haberman (2006) 
Model 

 Normality Test for the RH Model 
 The Heavy-Tailed Distributions 
 A Cox Process with Leptokurtic 

Intensity 
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Renshaw and Haberman (2006) 
Model

( ), ,x t x x t x t x x tln m k eα β η γ −= + + +

1t t tk k µ ε−− = +

( )1t x t x t xzγ γ γ γγ µ α γ µ σ− − − −∆ = + ∆ − +
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Normality Test for the RH Model 

 Data Source: HMD
 Country: 
Finland, France, Italy and the Netherlands

 Age: 60 to 89
 Period: 1900–1999

( ), ,x t x x t x t x x tln m k eα β η γ −= + + +

Normality Test

1t t tk k µ ε−− = +

( )1t x t x t xzγ γ γ γγ µ α γ µ σ− − − −∆ = + ∆ − +
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Normality Test for the RH Model 
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Normality Test for the RH Model - JB test
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Normality Test for the RH Model - JB test
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Normality Test for the RH Model - JB test
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The Heavy-Tailed Distributions 
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A Cox Process 
with Leptokurtic Intensity

where

( ), ,~x t x tD Cox λ
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A Cox Process 
with Leptokurtic Intensity
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Iterating Procedure

16



Iterating Procedure
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A Cox Process 
with Leptokurtic Intensity

 Constraints:

 After obtaining the mortality indices and 
cohort effects, we obtain their corresponding  
parameters by maximizing the log-likelihood 
function
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Empirical Analysis

 Model Comparison 

 In-Sample Goodness of Fit 

 Mortality Projection 
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Model Comparison 

 Model Criteria:
 LLF: Log Likelihood Function
 AIC: Akaike Information Criterion
 BIC: Bayesian Information Criterion

 Goodness-of-fit Tests: 
 KS: Kolmogorov-Smirnov test
 AD: Anderson-Darling test
 CvM: Cramér-von-Mises test
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In-Sample Goodness of Fit
 Goodness-of-fit Measures for the Number of 

Deaths

 Goodness-of-fit Tests for the Residuals of the 
RH Model

 Goodness-of-fit Measures for the First 
Difference in Mortality Indices

 Goodness-of-fit Measures for the Residuals of 
Cohort Effects
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Goodness-of-fit Measures for 
the Number of Deaths
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Goodness-of-fit Measures for 
the Number of Deaths
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Goodness-of-fit Tests for the 
Residuals of the RH Model
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Goodness-of-fit Tests for the 
Residuals of the RH Model
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Goodness-of-fit Measures for the First 
Difference in Mortality Indices
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Goodness-of-fit Measures for the First 
Difference in Mortality Indices
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Goodness-of-fit Measures for the 
Residuals of Cohort Effects
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Goodness-of-fit Measures for the 
Residuals of Cohort Effects
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Goodness-of-fit Tests for the First 
Difference in Mortality Indices
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Goodness-of-fit Tests for the First 
Difference in Mortality Indices
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Goodness-of-fit Tests for the 
Residuals in Cohort Effects
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Goodness-of-fit Tests for the 
Residuals in Cohort Effects

33



Mortality Projection

 Fitting period: 1900-1999
 Forecasting period: 2000-2007
 Simulation Paths: 1,000,000
 Mean Absolute Percentage Error
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MAPE of Mortality Projection
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MAPE of Mortality Projection
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Conclusions and Suggestions
 We attempt to provide an iterative fitting 

algorithm for estimating the Cox regression 
model under which death rates adhere to the RH 
model with three heavy-tailed distributions
—JD, VG and NIG.

 Using mortality data from the four countries, 
Finland, France, Italy and the Netherlands, we 
employ the KS, AD and CvM tests and find 
consistent support for the non-Gaussian 
residuals of the RH model.
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Conclusions and Suggestions

 When we calibrate the parameters of 
the RH model, the VG model is the 
best one for the four countries 
according to the BIC criterion.

 The residuals of the mortality indices 
and cohort effects come from non-
Gaussian distributions.
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Conclusions and Suggestions

 In the four countries, the non-
Gaussian distributions provide good 
mortality projections.

 For applications of the RH model, the 
heavy-tailed distributions appear to 
be the most appropriate choices for 
modeling long-term mortality data.
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Thanks for your attention.
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The proof of theorem 1
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