Mortality Modelling with Lévy Processes: A Cox Process with Leptokurtic Intensity

> Hong-Chih Huang Chou-Wen Wang* I-Chien Liu

> > 2011/09/09

Abstract

- When the number of deaths follows a Cox process, this paper provides an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model and employs the non-Gaussian distributions to model the residuals of the Renshaw and Haberman (2006) model.
- With mortality data of Finland, France, Italy and the Netherlands over the period 1900–2007, both in-sample model selection criteria and out-ofsample projection errors indicate a preference for modeling the Renshaw and Haberman (2006) model with non-Gaussian innovations.

Agenda

- Introduction
- The Stochastic Mortality Models with Cox Error Structures
 - Renshaw and Haberman (2006) Model
 - Normality Test for the RH Model
 - The Heavy-Tailed Distributions
 - A Cox Process with Leptokurtic Intensity
- Empirical Analysis
 - Model Comparison
 - In-Sample Goodness of Fit
 - Mortality Projection
- Conclusions and Suggestions

Introduction

An improvement to the Lee-Carter model is to model the number of deaths as a Poisson model commonly employed in the literature on mortality modeling

(see, for example, Wilmoth, 1993; Brouhns et al., 2002; Renshaw and Haberman, 2006; Cairns et al., 2009; Haberman and Renshaw, 2009)

Introduction

- Instead of using Poisson model with deterministic intensity function, an alternative means of fitting the number of deaths is to specify a *doubly stochastic Poisson* process, also known as *Cox* process (Cox, 1955), to catch the stochastic intensity property.
- This paper provides an iterative fitting algorithm for estimating the Cox regression model under which mortality rates adhere to the RH model with non-Gaussian innovations.

The Stochastic Mortality Models with Cox Error Structures

- Renshaw and Haberman (2006) Model
- Normality Test for the RH Model
- The Heavy-Tailed Distributions
- A Cox Process with Leptokurtic Intensity

Renshaw and Haberman (2006) Model

$$ln(m_{x,t}) = \alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + e_{x,t}$$

$$k_t - k_{t-1} = \mu + \varepsilon_t$$
 ARIMA(0,1,0)

$$\Delta \gamma_{t-x} = \mu_{\gamma} + \alpha_{\gamma} \left(\Delta \gamma_{t-x-1} - \mu_{\gamma} \right) + \sigma_{\gamma} z_{t-x} \quad \checkmark \quad \text{ARIMA(1,1,0)}$$

Normality Test for the RH Model

Data Source: HMD Country: Finland, France, Italy and the Netherlands □ Age: 60 to 89 Normality Test Period: 1900–1999 $ln(m_{x,t}) = \alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + e_{x,t}$ $k_t - k_{t-1} = \mu + \varepsilon_t$ $\Delta \gamma_{t-x} = \mu_{\gamma} + \alpha_{\gamma} \left(\Delta \gamma_{t-x-1} - \mu_{\gamma} \right) + \sigma_{\gamma} z_{t-x}$

Normality Test for the RH Model

9

Normality Test for the RH Model - JB test

Country	Finland	France	Italy	Netherlands
Slowpagg	-0.408	0.087	0.236	0.243
Skewness	(0.045)	(0.045)	(0.045)	(0.045)
Europea Vuuttooia	3.407	2.623	9.531	3.015
Excess Kurtosis	(0.089)	(0.089)	(0.089)	(0.089)
ID Test	1533.667	863.566	11383.204	1165.756
JB Test	[< 0.001]	[< 0.001]	[< 0.001]	[< 0.001]

Panel A: the Residuals of the RH Model

The table presents the skewness and excess kurtosis of the residuals of the RH model. Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as $\sqrt{6/n}$ and $\sqrt{24/n}$, respectively. *n* denotes the number of observations. The p-values of Jarque-Bera (JB) test are given in bracket.

Normality Test for the RH Model - JB test

Country	Finland	d France Ita		Netherlands
Slavanaga	-0.039	-0.039 0.246		-1.994
Skewness	(0.246)	(0.246)	(0.246)	(0.246)
	0.308	0.747	1.174	12.991
	(0.492)	(0.492)	(0.492)	(0.492)
JB Test	0.417	3.301	6.241	761.788
	[0.500]	[0.121]	[0.039]	[< 0.001]
T1	1	1		··· ··································

Panel B: the First Difference in Mortality Indices

The table presents the skewness and excess kurtosis of the first difference in mortality indices. Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as $\sqrt{6/n}$ and $\sqrt{24/n}$, respectively. *n* denotes the number of observations. The p-values of Jarque-Bera (JB) test are given in bracket.

Normality Test for the RH Model - JB test

Country	Finland	France	Italy	Netherlands
C1- or	-0.301	-0.264	2.287	-0.605
Skewness	(0.217)	(0.217)	(0.217)	(0.217)
Europea Vuuttoria	2.322	5.905	11.997	3.915
Excess Kurtosis	(0.435)	(0.435)	(0.435)	(0.435)
ID Test	30.438	186.004	872.381	88.850
JB Test	[< 0.001]	[< 0.001]	[< 0.001]	[< 0.001]

Panel C: the Residuals of Cohort Effects

The table presents the skewness and excess kurtosis of the residuals of cohort effects. Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as $\sqrt{6/n}$ and $\sqrt{24/n}$, respectively. *n* denotes the number of observations. The p-values of Jarque-Bera (JB) test are given in bracket.

The Heavy-Tailed Distributions

$\Box JD$ $f_{e_{x,t}}^{JD}\left(y\big|\sigma,\lambda_{N},\mu_{Y},\delta_{Y}\right) = \sum_{n=0}^{\infty} \frac{\lambda_{N}^{n} e^{-\lambda_{N}}}{n!} \Phi\left(y\big|(n-\lambda_{N})\mu_{Y},\sigma^{2}+n\delta_{Y}^{2}\right)$

$$\square \operatorname{NIG}_{f_{e_{x,t}}^{NIG}}(y|\alpha,\beta,\delta,\theta) = \frac{\alpha\delta}{\pi} \exp\left(\delta\sqrt{\alpha^2 - \beta^2} + \beta(y-\theta)\right) \frac{K_1\left(\alpha\sqrt{\delta^2 + (y-\theta)^2}\right)}{\sqrt{\delta^2 + (y-\theta)^2}}$$

VG

$$f_{e_{x,t}}^{VG}\left(y\big|\alpha,\beta,\gamma,\theta\right) = \frac{\left(\alpha^{2}-\beta^{2}\right)^{\gamma}\left|y-\theta\right|^{\gamma-0.5}K_{\gamma-0.5}\left(\alpha\left|y-\theta\right|\right)}{\sqrt{\pi}\left(2\alpha\right)^{\gamma-0.5}\Gamma(\gamma)}\exp\left(\beta\left(y-\theta\right)\right)$$

A Cox Process with Leptokurtic Intensity

$$D_{x,t} \sim Cox(\lambda_{x,t})$$

$$\lambda_{x,t} = E_{x,t} m_{x,t} = E_{x,t} \exp\left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + e_{x,t}\right)$$

$$LLF = \sum_{x,t} \int_{-\infty}^{\infty} \log f(D_{x,t} = d_{x,t} | e_{x,t} = y) f_{e_{x,t}}(y) dy$$

where

$$\log f \left(D_{x,t} = d_{x,t} \mid e_{x,t} = y \right)$$
$$= d_{x,t} \log \left(E_{x,t} \exp \left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + y \right) \right) - E_{x,t} \exp \left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + y \right) - \log \left(d_{x,t} \right)$$

A Cox Process with Leptokurtic Intensity

Theorem 1: When the death rates follows the RH model, the closed-form solution of

the log-likelihood function in Equation (15) is derived as follows:

$$LLF = \sum_{x,t} \left[d_{x,t} \left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} \right) - \left(E_{x,t} \exp\left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} \right) \right) M_{e_{x,t}} \right] + C,$$

where $M_{e_{x,t}}$ is the moment generating function of $e_{x,t}$; C represents a constant term

equal to
$$\sum_{x,t} \left[d_{x,t} \log E_{x,t} - \log(d_{x,t}!) \right].$$

Iterating Procedure

$$LLF_{e_{x,t}} = \sum_{x,t} \log \left(f\left(e_{xt} \middle| \alpha_x, \eta_x, \gamma_{t-x}, \beta_x, k_t\right) \right).$$

z=t-x

$$update(\theta) = u(\theta) = \theta - \frac{\partial LLF/\partial \theta}{\partial^2 LLF/\partial \theta^2}.$$
$$u(\alpha_x) = \alpha_x + \frac{\sum_{t} \left[d_{x,t} - E_{x,t} \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x}) M_{e_{x,t}} \right]}{\sum_{t} \left[E_{x,t} \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x}) M_{e_{x,t}} \right]}$$
$$u(\gamma_z) = \gamma_z + \frac{\sum_{x,t} \left[d_{x,t} \eta_x - E_{x,t} \eta_x \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_z) M_{e_{x,t}} \right]}{\sum_{x,t} \left[E_{x,t} (\eta_x)^2 \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_z) M_{e_{x,t}} \right]}$$

16

Iterating Procedure

$$u(\eta_{x}) = \eta_{x} + \frac{\sum_{t} \left[d_{x,t} \gamma_{t-x} - E_{x,t} \gamma_{t-x} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}{\sum_{t} \left[E_{x,t} \gamma_{t-x}^{2} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}$$
$$u(k_{t}) = k_{t} + \frac{\sum_{t} \left[d_{x,t} \beta_{x} - E_{x,t} \beta_{x} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}{\sum_{x} \left[E_{x,t} \beta_{x}^{2} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}$$
$$u(\beta_{x}) = \beta_{x} + \frac{\sum_{t} \left[d_{x,t} k_{t} - E_{x,t} k_{t} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}{\sum_{t} \left[E_{x,t} k_{t}^{2} \exp\left(\alpha_{x} + \beta_{x} k_{t} + \eta_{x} \gamma_{t-x}\right) M_{e_{x,t}} \right]}$$

A Cox Process with Leptokurtic Intensity

Constraints:

$$\sum_{t} k_{t} = 0$$
, $\sum_{x} \beta_{x} = 1$, $\sum_{x} \eta_{x} = 1$ and $\sum_{x,t} \gamma_{t-x} = 0$.

After obtaining the mortality indices and cohort effects, we obtain their corresponding parameters by maximizing the log-likelihood function

$$\sum_{t} \log(f(\varepsilon_t))$$
 and $\sum_{s=t-x} \log(f(z_s))$

Empirical Analysis

Model Comparison

□ In-Sample Goodness of Fit

Mortality Projection

Model Comparison

□ Model Criteria:

- LLF: Log Likelihood Function
- AIC: Akaike Information Criterion
- BIC: Bayesian Information Criterion
- Goodness-of-fit Tests:
 - KS: Kolmogorov-Smirnov test
 - AD: Anderson-Darling test
 - CvM: Cramér-von-Mises test

In-Sample Goodness of Fit

- Goodness-of-fit Measures for the Number of Deaths
- Goodness-of-fit Tests for the Residuals of the RH Model
- Goodness-of-fit Measures for the First Difference in Mortality Indices
- Goodness-of-fit Measures for the Residuals of Cohort Effects

Goodness-of-fit Measures for the Number of Deaths

Panel A: the Finland Mortality Data									
Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank			
Normal	-17533.8	17849.8	18798.8	4	4	3			
JD	-17524.6	17843.6	18801.7	3	3	4			
VG	-17442.8	17760.8	18715.8	1	1	1			
NIG	-17491.4	17809.4	18764.4	2	2	2			

Panel B: the France Mortality Data

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-31475.1	31791.1	32740.1	4	4	4
JD	-31426.1	31745.1	32703.1	2	2	2
VG	-31355.9	31673.9	32628.9	1	1	1
NIG	-31450.6	31768.6	32723.6	3	3	3 22

Goodness-of-fit Measures for the Number of Deaths

Panel C: the Italy Mortality Data									
Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank			
Normal	-44206.6	44522.6	45471.6	4	4	4			
JD	-43202.4	43521.4	44479.4	2	2	2			
VG	-42629.8	42947.8	43902.8	1	1	1			
NIG	-43974.4	44292.4	45247.4	3	3	3			

Panel D: the Netherlands Mortality Data

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-18427.2	18743.2	19692.2	4	4	3
JD	-18419.8	18738.8	19696.8	3	3	4
VG	-18353.0	18671.0	19626.0	1	1	1
NIG	-18403.3	18721.3	19676.3	2	2	223

Goodness-of-fit Tests for the Residuals of the RH Model

	Panel A: the Finland Mortality Data									
	KS				AD			CvM		
Model	Statistic	Critical	Value	-Statistic	Critical	Value	Statistic	Critical Value		
	Statistic	5%	1%		5%	1%	Statistic	5%	1%	
Normal	0.044**	0.025	0.030	15.095**	2.524	3.860	2.405**	0.469	0.731	
JD	0.011	0.025	0.030	0.451	2.475	3.804	0.073	0.465	0.738	
VG	0.014	0.025	0.030	0.886	2.475	3.804	0.091	0.465	0.738	
NIG	0.009	0.025	0.030	0.274	2.475	3.804	0.031	0.465	0.738	
		I	Panel B:	the France	e Mortal	ity Data				
		KS		AD			CvM			
Model	Statistia	Critical	Value	Statistic	Critical	Value	Statistic	Critical	Value	
	Statistic	5%	1%	Statistic	5%	1%	Statistic	5%	1%	
Normal	0.045**	0.025	0.030	13.377**	2.524	3.860	2.152**	0.469	0.731	
JD	0.015	0.025	0.030	0.406	2.475	3.804	0.066	0.465	0.738	
VG	0.014	0.025	0.030	0.585	2.475	3.804	0.077	0.465	0.738	
NIG	0.014	0.025	0.030	0.381	2.475	3.804	0.060	0.465	0.738	

Goodness-of-fit Tests for the Residuals of the RH Model

	Panel C: the Italy Mortality Data									
		KS			AD			CvM		
Model	Statistic	Critical	Value	Statistic	Critical	Value	Statistic	Critical	Value	
	Statistic	5%	1%	Statistic	5%	1%	Statistic	5%	1%	
Normal	0.088**	0.025	0.030	55.510**	2.524	3.860	9.935**	0.469	0.731	
JD	0.034**	0.025	0.030	4.493**	2.475	3.804	0.793**	0.465	0.738	
VG	0.022	0.025	0.030	3.057*	2.479	3.803	0.374	0.464	0.737	
NIG	0.013	0.025	0.030	0.391	2.480	3.825	0.051	0.464	0.737	
		Par	el D: th	e Netherla	nds Mor	tality D	ata			
		KS		AD			CvM			
Model	Statistic	Critical	Value	Statistic	Critical	Value	Statistic	Critical	Value	
	Statistic	5%	1%	Statistic	5%	1%	Statistic	5%	1%	
Normal	0.048**	0.025	0.030	16.518**	2.524	3.860	2.618**	0.469	0.731	
JD	0.015	0.025	0.030	0.623	2.475	3.804	0.102	0.465	0.738	
VG	0.015	0.025	0.030	0.981	2.475	3.804	0.107	0.465	0.738	
NIG	0.014	0.025	0.030	0.487	2.475	3.804	0.068	0.465	0.738	

Goodness-of-fit Measures for the First Difference in Mortality Indices

Panel A: the Finland Mortality Index									
Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank			
Normal	-182.46	184.46	187.05	4	1	1			
JD	-181.97	186.97	193.46	1	4	4			
VG	-182.10	186.10	191.29	2	2	2			
NIG	-182.18	186.18	191.37	3	3	3			

Panel B: the France Mortality Index

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-193.05	195.05	197.64	4	1	1
JD	-190.96	195.96	202.45	1	4	4
VG	-191.41	195.41	200.60	2	2	2
NIG	-191.66	195.66	200.85	3	3	3 26

Goodness-of-fit Measures for the First Difference in Mortality Indices

Panel C: the Italy Mortality Index									
Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank			
Normal	-201.24	203.24	205.84	4	3	1			
JD	-198.87	203.87	210.35	2	4	4			
VG	-198.78	202.78	207.97	1	1	2			
NIG	-198.93	202.93	208.12	3	2	3			

Panel D: the Netherlands Mortality Index

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-211.01	213.01	215.61	4	4	4
JD	-187.16	192.16	198.65	3	3	3
VG	-186.02	190.02	195.21	1	1	1
NIG	-186.10	190.10	195.29	2	2	2 ₂₇

Goodness-of-fit Measures for the Residuals of Cohort Effects

Panel A: the Finland Cohort Effect											
Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank					
Normal	-184.24	187.24	191.50	4	4	4					
JD	-168.16	174.16	182.70	1	2	3					
VG	-168.47	173.47	180.58	2	1	1					
NIG	-169.67	174.67	181.78	3	3	2					

Panel B: the France Cohort Effect

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-123.09	126.09	130.35	4	4	4
JD	-101.90	107.90	116.43	1	1	2
VG	-115.61	120.61	127.72	3	3	3
NIG	-103.40	108.40	115.51	2	2	1 28

Goodness-of-fit Measures for the Residuals of Cohort Effects

Panel C: the Italy Cohort Effect											
Model	LLF AIC BIC LLF Rank AIC Rank BIC Rank										
Normal	-146.70	149.70	153.97	4	4	4					
JD	-114.46	120.46	128.99	1	1	1					
VG	-126.47	131.47	138.58	3	3	3					
NIG	-123.55	128.55	135.66	2	2	2					

Panel D: the Netherlands Cohort Effect

Model	LLF	AIC	BIC	LLF Rank	AIC Rank	BIC Rank
Normal	-79.39	82.39	86.66	4	4	4
JD	-66.60	72.60	81.13	2	3	3
VG	-64.22	69.22	76.33	1	1	1
NIG	-67.40	72.40	79.51	3	2	229

Goodness-of-fit Tests for the First Difference in Mortality Indices

Devial A, the Eight and Mantelliter Index

	Fallel A. the Filliand Moltanty Index										
		KS			AD			CvM			
Model	Statistic	Critical	l Value	ue Critical Value		Statistic	Critical	Value			
	Statistic	5%	1%	Statistic	5%	1%	Statistic	5%	1%		
Normal	0.052	0.130	0.158	0.229	2.477	3.933	0.039	0.461	0.737		
JD	0.040	0.131	0.157	0.114	2.491	3.859	0.017	0.465	0.735		
VG	0.040	0.130	0.159	0.131	2.540	3.929	0.021	0.465	0.780		
NIG	0.045	0.131	0.156	0.152	2.497	3.893	0.025	0.457	0.733		
		I	Panel B:	the France	e Mortal	ity Inde	x				
		KS			AD			CvM			
Model		Critical	l Value		Critical	Value		Critical	Value		

		KS			AD			\mathbf{CvM}	
Model	Statistic	Critical Value		Statistic	Critical Value		Statistic	Critical	Value
	Statistic	5%	1%	-Statistic	5%	1%	- Statistic	5%	1%
Normal	0.070	0.130	0.158	0.503	2.477	3.933	0.090	0.461	0.737
JD	0.052	0.131	0.157	0.198	2.491	3.859	0.031	0.465	0.735
VG	0.046	0.130	0.159	0.221	2.540	3.929	0.034	0.464	0.780
NIG	0.053	0.131	0.156	0.250	2.496	3.892	0.040	0.457	0.733

Goodness-of-fit Tests for the First Difference in Mortality Indices

Panel C: the Italy Mortality Index											
	KS				AD			CvM			
Model	Statistia	Critical	Value	Statistic	Critical	Value	Statistic	Critical Value			
	Statistic	5%	1%	-Statistic	5%	1%	-Statistic	5%	1%		
Normal	0.072	0.130	0.158	0.475	2.477	3.933	0.076	0.461	0.737		
JD	0.057	0.131	0.157	0.166	2.491	3.858	0.026	0.465	0.735		
VG	0.042	0.130	0.159	0.130	2.540	3.929	0.017	0.465	0.780		
NIG 0.049 0.131 0.156 0.142 2.496 3.892 0.021 0.457 0.73											
		Pan	el D: the	e Netherla	nds Moi	tality In	dex				

		KS			AD			CvM	
Model	Statistic	Critical Value		Statistic	Critical	Value	Statistic	Critical	Value
	Statistic	5%	1%	-Statistic	5%	1%	-Statistic	5%	1%
Normal	0.128*	0.130	0.158	3.702*	2.477	3.933	0.640*	0.461	0.737
JD	0.072	0.131	0.157	0.388	2.491	3.855	0.069	0.464	0.734
VG	0.063	0.130	0.159	0.406	2.540	3.923	0.045	0.464	0.779
NIG	0.060	0.131	0.156	0.230	2.499	3.901	0.028	0.456	0.733

Goodness-of-fit Tests for the Residuals in Cohort Effects

Panel A: the Finland Cohort Effect										
	KS			AD			CvM			
Statistia	Critical	l Value	-Statistia	Critical	Value	Statistic	Critical	Value		
Statistic	5%	1%	Statistic	5%	1%	Statistic	5%	1%		
0.108	0.115	0.137	2.541*	2.453	3.816	0.470*	0.450	0.712		
0.032	0.115	0.137	0.106	2.495	3.786	0.015	0.460	0.724		
0.055	0.116	0.143	0.166	2.518	3.936	0.030	0.463	0.752		
0.034	0.116	0.139	0.171	2.522	3.836	0.023	0.463	0.729		
		Panel B	: the Fran	ce Coho	rt Effect					
	KS			AD			CvM			
Statistic	Critical	l Value	-Statistic	Critical	Value	-Statistic	Critical	Value		
Statistic	5%	1%	- Statistic	5%	1%	-Statistic	5%	1%		
0.120*	0.115	0.137	2.562*	2.453	3.816	0.391	0.450	0.712		
0.069	0.115	0.137	0.453	2.495	3.786	0.077	0.459	0.724		
0.087	0.116	0.143	1.513	2.520	3.936	0.278	0.463	0.753		
0.066	0.116	0.139	0.553	2.521	3.827	0.090	0.463	0.729		
	Statistic 0.108 0.032 0.055 0.034 0.034 0.034	KS Statistic Critical 5% 5% 0.108 0.115 0.032 0.116 0.055 0.116 0.034 0.116 KS KS Statistic KS 0.120* 0.115 0.087 0.116 0.0166 0.116	Panel A KS Statistic Critical Value 5% 1% 0.108 0.115 0.137 0.032 0.116 0.143 0.055 0.116 0.143 0.034 0.116 0.139 KS Fanel B Statistic Critical Value Statistic O.115 0.137 0.120* 0.115 0.137 0.137 0.069 0.115 0.137 0.137 0.087 0.116 0.143 0.137 0.066 0.116 0.139 0.137	Panel A: the FinlaKSStatisticCritical Value 5%Statistic 5% 1%Statistic0.1080.1150.1372.541*0.0320.1150.1370.1060.0550.1160.1430.1660.0340.1160.1390.171KSStatisticCritical Value 5%Statistic5%1%0.120*0.1150.1372.562*0.0690.1150.1370.4530.0870.1160.1431.5130.0660.1160.1390.553	Panel A: the Finland Coho KS AD Critical Value Statistic Critical 5% 0.108 0.115 0.137 2.541* 2.453 0.032 0.115 0.137 0.106 2.495 0.055 0.116 0.137 0.106 2.495 0.034 0.116 0.139 0.171 2.522 Panel B: the France Cohon KS AD Statistic Critical Value Statistic Critical 5% O.115 O.137 2.562* 2.453 O.116 O.139 O.171 2.522 O.116 O.137 O.171 C.513 Statistic Critical 5% O.115 O.137 2.562* 2.453 O.115 O.137 O.162 O.161 O.115	Panel A: the Finland Cohort Effect AD AD Critical Value Statistic Critical Value Statistic Critical Value 5% 1% Onios Onios Statistic Critical Value 0.032 0.115 0.137 2.541* 2.453 3.816 0.032 0.115 0.137 0.106 2.495 3.786 0.055 0.116 0.139 0.171 2.522 3.836 Onios Onios 0.034 0.116 0.139 0.171 2.522 3.836 0.034 0.116 0.139 0.171 2.522 3.836 Panel B: the France Cohort Effect AD Statistic Critical Value Statistic Critical Value Statistic Critical Value 5% 1% 2.4953 3.816	Panel A: the Finland Cohort EffectKSADStatisticCritical Value 5% 1%2.541*2.4533.8160.470*0.1080.1150.1372.541*2.4533.8160.470*0.0320.1150.1370.1062.4953.7860.0150.0550.1160.1430.1662.5183.9360.0300.0340.1160.1390.1712.5223.8360.023Panel B: the France Cohort EffectKSADKSADStatisticCritical Value 5% 1% 5% 1% 5% StatisticCritical Value 5% 1% 5% 1% StatisticCritical Value 5% 1% 5% 1% O.120* 0.115 0.137 $2.562*$ 2.453 3.816 0.391 0.069 0.115 0.137 0.453 2.495 3.786 0.077 0.087 0.116 0.143 1.513 2.520 3.936 0.278 0.066 0.116 0.139 0.553 2.521 3.827 0.900	Panel A: the Finland Cohort Effect AD CvM KS AD CvM Statistic Critical Value 5% Statistic Critical Value 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value 5% 0.108 0.115 0.137 2.541* 2.453 3.816 0.470* 0.450 0.032 0.115 0.137 0.106 2.495 3.786 0.015 0.460 0.055 0.116 0.143 0.166 2.518 3.936 0.023 0.463 0.034 0.116 0.139 0.171 2.522 3.836 0.023 0.463 0.034 0.116 0.139 0.171 2.522 3.836 0.023 0.463 0.034 0.116 0.139 0.171 2.522 3.836 0.023 0.463 10.034 0.116 0.137 2.521 3.816 0.391 0.463 10.120* 0.115 0.137 2.562* 2.453 3.816 0.391 0.450 0.069 0.116		

Goodness-of-fit Tests for the Residuals in Cohort Effects

Panel C: the Italy Cohort Effect											
	KS				AD			CvM			
Model	Statistic	Critical	Value	Statistic	Critical Value		Statistic	Critical	Value		
		5%	1%	-Statistic	5%	1%	Statistic	5%	1%		
Normal	0.129*	0.115	0.137	3.147*	2.453	3.816	0.419	0.450	0.712		
JD	0.054	0.115	0.137	0.345	2.495	3.786	0.052	0.459	0.724		
VG	0.068	0.116	0.143	0.744	2.520	3.936	0.078	0.464	0.753		
NIG	0.061	0.116	0.139	0.597	2.521	3.827	0.066	0.463	0.730		

Panel D: the Netherlands Cohort Effect

		KS			AD			CvM	
Model	Statistic	Critical	Critical Value Critical Value		Statistic	Critical Value			
	Statistic	5%	1%	-Statistic	5%	1%	-Statistic	5%	1%
Normal	0.094	0.115	0.137	1.890	2.453	3.816	0.329	0.450	0.712
JD	0.044	0.115	0.137	0.258	2.495	3.786	0.035	0.459	0.724
VG	0.073	0.115	0.143	0.817	2.516	3.934	0.150	0.462	0.753
NIG	0.054	0.116	0.139	0.388	2.521	3.836	0.066	0.462	0.729

Mortality Projection

- Fitting period: 1900-1999
- □ Forecasting period: 2000-2007
- □ Simulation Paths: 1,000,000
- Mean Absolute Percentage Error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{A_i - F_i}{A_i} \right|$$

where A_i is historical mortality rate and F_i is the forecast mortality rate

MAPE of Mortality Projection

Panel A: the Finland Mortality Data (Unit: %)					
Model	Mean	Median	Mean Rank	Median Rank	
Original RH	3.883	3.461	5	5	
VG-Normal	3.865	3.440	4	4	
VG-JD	3.858	3.415	1	1	
VG-VG	3.858	3.419	2	2	
VG-NIG	3.863	3.435	3	3	

Panel B: the France Mortality Data (Unit: %)

Model	Mean	Median	Mean Rank	Median Rank
Original RH	3.247	2.782	3	4
VG-Normal	3.253	2.787	5	5
VG-JD	3.252	2.772	4	3
VG-VG	3.242	2.753	2	2
VG-NIG	3.233	2.744	1	1

Note: Original RH is the same as M2 of Cairns et al. (2009). X-Y model means that the best model for the number of death is X model and the error terms in Equations (2) and (3) are Y model.

MAPE of Mortality Projection

Panel C: the Italy Mortality Data (Unit: %)					
Model	Mean	Median	Mean Rank	Median Rank	
Original RH	3.517	2.978	5	5	
VG-Normal	3.509	2.971	4	4	
VG-JD	3.501	2.970	3	3	
VG-VG	3.494	2.951	1	1	
VG-NIG	3.496	2.956	2	2	

Panel D: the Netherlands Mortality Data (Unit: %)

Model	Mean	Median	Mean Rank	Median Rank
Original RH	3.923	3.379	4	4
VG-Normal	3.925	3.381	5	5
VG-JD	3.671	2.998	2	2
VG-VG	3.486	2.951	1	1
VG-NIG	3.691	3.045	3	3

Note: Original RH is the same as M2 of Cairns et al. (2009). X-Y model means that the best model for the number of death is X model and the error terms in Equations (2) and (3) are Y model.

Conclusions and Suggestions

- We attempt to provide an iterative fitting algorithm for estimating the Cox regression model under which death rates adhere to the RH model with three heavy-tailed distributions
 JD, VG and NIG.
- Using mortality data from the four countries, Finland, France, Italy and the Netherlands, we employ the KS, AD and CvM tests and find consistent support for the non-Gaussian residuals of the RH model.

Conclusions and Suggestions

When we calibrate the parameters of the RH model, the VG model is the best one for the four countries according to the BIC criterion.

The residuals of the mortality indices and cohort effects come from non-Gaussian distributions.

Conclusions and Suggestions

In the four countries, the non-Gaussian distributions provide good mortality projections.

For applications of the RH model, the heavy-tailed distributions appear to be the most appropriate choices for modeling long-term mortality data.

Thanks for your attention.

The proof of theorem 1

x.t

$$LLF = \sum_{x,t} \int_{-\infty}^{\infty} \log f(D_{x,t} = d_{x,t} | e_{x,t} = y) f_{e_{x,t}}(y) dy$$

$$= \sum_{x,t} \left(\int_{-\infty}^{\infty} d_{x,t} (\log E_{x,t} + \alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} + y) f_{e_{x,t}}(y) dy - \int_{-\infty}^{\infty} E_{x,t} \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x}) \exp(y) f_{e_{x,t}}(y) dy - \log(d_{x,t}!) \right).$$

$$= \sum_{x,t} \left[d_{x,t} \left(\log E_{x,t} + \alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} \right) - E_{x,t} \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x}) \int_{-\infty}^{\infty} \exp(y) f_{e_{x,t}}(y) dy - \log(d_{x,t}!) \right]$$

$$= \sum_{x,t} \left[d_{x,t} \left(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x} \right) - \left(E_{x,t} \exp(\alpha_x + \beta_x k_t + \eta_x \gamma_{t-x}) \right) M_{e_{x,t}} \right]$$

$$+ \sum \left[d_{x,t} \log E_{x,t} - \log(d_{x,t}!) \right].$$