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■ Goal: redistributing stochastic variables (risk)
Over-The-Counter in “fairest way”

■ Setting:

- Cooperative game-theoretic model

- Redistribution obtained via swap-contracts

■ Allow for all forms of redistributions

■ Key issue:

- No liquid market
- Trade Over-The-Counter
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Focus: Longevity risk; Why?

■ Illiquid market, where there are no equilibrium prices

■ Redistributions between annuities and death benefits (cf.
Wang et al. (2010))

■ Literature shows that longevity risk is prominent for
pension funds and life insurers. See e.g. Hári et
al.(2008) and Coughlan et al. (2007)

■ Prices are heavily debatable (see Bauer et al (2010)).
Two focusses:

- equivalent utility pricing principle (Cui (2008) and
Cox, Lin and Pedersen (2010))

- Prices obtained directly from (scarce)
longevity-linked bonds in the market (Lin and Cox
(2005))
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■ We model the OTC bargaining problem as a
Non-Transferable Utility (NTU) game.

■ We allow for heterogeneous beliefs regarding the
underlying probability distribution.
Very relevant for applications with longevity risk.

■ Calibrated example shows hedge benefit is large.
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■ Longevity risk: Risk that individuals live longer or
shorter than expected

- Micro longevity risk diminishes if pool size is
sufficiently large (see Oliveiri and Pitacco (2001),
Milevsky, Promislow and Young (2006) and Hári et
al. (2008))

- Macro longevity risk: Risk that the population as a
whole lives longer or shorter

- Systematic part of longevity risk

We focus on macro longevity risk.
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■ Key issue: large variety of longevity risk models

■ Prominent examples:

- Lee-Carter model (1992)

- Cairns-Blake-Dowd model (2006, 2008)

- P-spline model (Currie, Durban and Eilers (2004))
...

■ Different data used for obtaining longevity distribution

- For instance, different horizon of data
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Firms redistribute risk in order to increase expected utility of
the present value of the Net Asset Value at a future
evaluation dateT :

Xi(T ) ≡
NAVi(T )

(1 + r)T
=

Ai(T )− Li(T )

(1 + r)T
,

where

■ Ai(T ) is the asset value at timeT

■ Li(T ) the value of the liabilities. Typically:

Li(T ) = BELi(T ) +MVMi(T ),

whereBELi(T ) is the best estimate of future liability
payments andMVMi(T ) the market value margin (e.g.
according to Solvency II) (a risk loading)

■ r is the risk-free rate
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■ Solvency II: set financial return equal to risk-free rate.

We have

Ai(t) = (1 + r)Ai(t− 1)− L̃i,t,

whereL̃i,t is the liability payment at timet.
■ Hence, we obtain

Xi(T ) = Ai(0)−
T∑

τ=1

L̃i,τ

(1 + r)τ
−

Li(T )

(1 + r)T
.
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Important to note:

■ In the current literature, redistributions have longer
maturity and intermediate payment dates

■ Then, every year there is a payment

■ In our model, we allow for this, namely asT = Tmax:

Xi(T
max) = Ai(0)−

Tmax∑

τ=1

L̃i,τ

(1 + r)τ
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■ Rolling contract every year more dynamic as we can
take into account that

- The mortality model can be updated

- There has been attrition

- New participants have entered the fund

- New regulations have been introduced

- Poor asset returns increase need for hedging
longevity

■ Moreover, we obtain in a calibrated example that the
standard deviation ofXi(1) is approximately50% of
standard deviation ofXi(T

max)
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■ Firms use a Von-Neuman-Morgenstern utility function
ui such thatu′i > 0, u′′i < 0

■ Let the risk profiles be given by(Xi(T ))i∈N and the
(heterogeneous) probability measures by(Ω, (Pi)i∈N ),
whereΩ finite

■ There is complete information about the risk profiles ,
utility functions and beliefs regarding the underlying
probability measures of all firms
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What is a Non-Transferable Utility game(N, V )?

Nash-Bargaining problem (Nash (1950)) in case of 2 firms:
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Bargain for(Xpost
i )i∈N such that

∑
i∈N X

post
i =

∑
i∈N Xi

■ Firms valuate a risk using

∆Ui(X
post
i ) = EPi [ui(X

post
i )− ui(Xi)]

■ Than, the we define the game:

V (S) =
{
a ∈ RS

∣∣∣∃(Xpost
i )i∈S ∈ RΩ×S

:
∑

j∈S X
post
j =

∑
i∈S Xi, a ≤ (∆Ui(X

post
i ))i∈S

}
,

for all S ⊂ N .
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■ Pareto optimal

◆ Everya ∈ V (N) such that there does not exist a
redistribution(Xpost

i )i∈N such that
(∆Ui(X

post
i ))i∈N 	 a

■ Individually Rational

- ∆Ui(X
post
i ) ≥ 0 for all firms inN

■ Core-element

- For every element for the core, there does not exist a
subset of firms that can form a redistribution that is
weakly beneficial for all members of this set and
strict for at least one firm

- Core is non-empty
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■ Interest rate is given byr = 0.03

■ MVMi(T ) = 0 for all i ∈ N and for allT ≥ 1

■ All firms use same Lee-Carter model and same data-set:
Pi = P (will be relaxed)

■ We use data about a “realistic” liability portfolio of a
pension fund

■ We assume that the pension fund has 50,000
participants; each receive 1 unit a year after retirement;

■ For the death benefit insurer, we assume:

- Fixed pay-off of 10 units in case of death before
retirement

- young participants
- varying size
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Let there be a average age pension fund and death benefit
insurer. Value liabilitiesXℓ

i (1) = Ai(0)−Xi(1); prior and
posterior:

−10% −5% 0 +5% +10%

0.05

0.1

Xℓ
2
(1) as % difference from BEL2(0)

Fr
eq

ue
nc

y

−10% −5% 0 +5% +10%
0

0.05

Xℓ
1
(1) as % difference from BEL1(0)

Fr
eq

ue
nc

y



Graphs

Longevity 7,
Frankfurt, September
8th, 2011

Introduction

Longevity risk

The model

The Game

Numerical
implementation

Calibration

Conclusion
Heterogeneous
probability measures

Bargaining for Over-The-Counter Risk Redistributions: The Case of Longevity Risk 22 / 27

Pay-off of swap only timeT = 1:
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Xi(T ) as function ofT ,
mean,2.5%-quantile and97.5-quantile:
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zero-utility premium= p : ∆Ui(X
post
i − pi) = 0 ∀i ∈ N ,

buffer= Q0.975(X
ℓ

i
(T ))−E[Xℓ

i
(T )]

E[Xℓ

i
(T )]

.

■ We obtain:

- Risk redistribution has worth approximately 375 for both
firms (zero-utility principle), in case of an average age
pension fund and a death benefit insurer

- buffer reduces from1.98% to 0.54% for pension fund and
from 9.25% to 1.34% for the death benefit insurer:

T Zero-Utility premium % reduction buffer
Pension fund Insurer Pension fund Insurer

1 377 374 73% 86%
5 1285 1246 85% 93%
10 1717 1650 84% 93%

Tmax 2322 2201 82% 93%
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Gains as function of sizeγ of death benefit insurer:
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■ The case of two death benefit insurers and one pension
fund.

■ Let two death benefit insurers have sizeγ
2
, so that total

risk equals two-firm problem previously

■ Then, forT = 1:
Pension fund Insurers (i = 2, 3)

zero-utility premium 168 168
% reduction buffer 80% 78%
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■ According to Borch (1962) and homogeneous
probability measures, all Pareto optimal outcomes are
obtained using

∑
j∈N Xj(T ) only

■ Here, heterogeneous probability measures(Pi)i∈N on∑
j∈N Xj(T )only are relevant for determining Pareto

set

■ Therefore, we discretize
∑

j∈N Xj(T ) by a partition of
the interval

■ Every probability measure will result in different
probabilities on “attaining” a part of the partition en
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