Anticipating the new life market:

Dependence-free bounds for longevity-linked derivatives

Hamza Hanbali Daniël Linders Jan Dhaene

Fourteenth International Longevity Risk and Capital Markets Solutions Conference

Amsterdam, 21 September 2018

Some References

- Blake, Cairns, Coughlan, Dowd and MacMinn (2013). *Journal of Risk and Insurance 80, 501–557.*
- Hunt and Blake (2015). Insurance: Mathematics and Economics 63, 12–29.
- Dhaene, Denuit, Goovaerts, Kaas and Vyncke (2002). *Insurance: Mathematics and Economics 31, 3–33.*
- Laurence and Wang (2008). European Journal of Finance 14, 717–734.
- Laurence and Wang (2009). Insurance: Mathematics and Economics 44, 35–47.

Summary

• **Focus**: Longevity (trend) bonds.

<u>Question</u>: How do multi-population models behave in the analysis of the payoff?

• <u>Answer</u>: We find some inconsistencies between the different models, especially in the *tail of the distribution*.

• <u>Solution</u>: Derive upper and lower bounds based on country-specific derivatives.

Coping with the systematic longevity risk

- The systematic risk is born by the insurer.
 - Natural Hedging.

- The systematic risk is born by the <u>individuals</u>.
 - Tontine schemes or survival funds.
 - Group-Self-Annuitization.
 - Updating mechanisms.

- The systematic risk is born by a third party.
 - Buy-Outs and Buy-Ins.
 - Longevity Swaps.
 - Longevity derivatives.

Coping with the systematic longevity risk

- The systematic risk is born by the insurer.
 - Natural Hedging.

- The systematic risk is born by the **individuals**.
 - Tontine schemes or survival funds.
 - Group-Self-Annuitization.
 - Updating mechanisms.

- The systematic risk is born by a third party.
 - Buy-Outs and Buy-Ins.
 - Longevity Swaps.
 - Longevity derivatives.

Longevity derivatives

Blake et al. (2013)

- Mortality Forwards.
 - e.g. Lucida q-forward.
- (CAT) Mortality bonds.
 - e.g. Swiss Re Vita bonds.
- Longevity (trend) bonds.
 - e.g. EIB/BNP, Kortis bond,

Longevity derivatives

Blake et al. (2013)

- Mortality Forwards.
 - e.g. Lucida q-forward.
- (CAT) Mortality bonds.
 - e.g. Swiss Re Vita bonds.
- Longevity (trend) bonds.
 - e.g. EIB/BNP, Kortis bond,

Swiss Re Kortis longevity bond

Annualized mortality improvements over *n* years:

• Age-specific index for EW population:

$$I^x_{EW}(t) = 1 - \left(\frac{m^{EW}(x,t)}{m^{EW}(x,t-n)}\right)^{\frac{1}{n}},$$

• Age-specific index for US population:

$$I_{US}^{y}(t) = 1 - \left(\frac{m^{US}(y,t)}{m^{US}(y,t-n)}\right)^{\frac{1}{n}}$$

Swiss Re Kortis longevity bond

Annualized mortality improvement indices:

• For EW males aged 75-85:

$$I_{EW}(t) = \frac{1}{x_N - x_1 + 1} \sum_{x=x_1}^{x_N} I_{EW}^x(t),$$

• For US males aged 55-65:

$$I_{US}(t) = \frac{1}{y_N - y_1 + 1} \sum_{y=y_1}^{y_N} I_{US}^y(t).$$

Swiss Re Kortis longevity bond

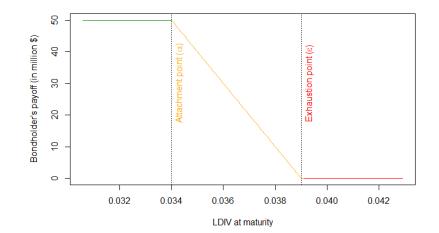
Longevity Divergence Index

• Longevity Divergence Index Value at time t:

$$I(t) = I_{EW}(t) - I_{US}(t).$$

\longrightarrow Hedging a portfolio of annuities from the EW cohort and life assurances from the US cohort.

Swiss Re Kortis longevity bond Payoff



Source: Adapted from Blake et al. (2013).

Hanbali, Linders and Dhaene

Amsterdam

Swiss Re Kortis longevity bond Payoff

• The payoff of the Swiss Re Kortis bond:

$$\mathsf{Payoff} = \begin{cases} 0, & \text{if } I(T) \geq \varepsilon. \\ B\left(1 - \frac{I(t) - \alpha}{\varepsilon - \alpha}\right), & \text{if } \varepsilon \geq I(T) \geq \alpha. \\ B, & \text{if } \alpha \geq I(T). \end{cases}$$

where α is the *attachment* point and ε is the *exhaustion* point.

Longevity trend bonds

Analyzing the payoff of longevity trend bonds requires a **multi-population model**.

Multi-population modeling

• Model 1 – Li and Lee (2005):

$$\log\left(m^{i}\left(x,t\right)\right) = \alpha^{i}(x) + \beta^{i}(x)\kappa^{i}(t) + \beta(x)\kappa(t).$$

• Model 2 – Common-Age-Effect, Kleinow (2015):

$$\log\left(m^{i}\left(x,t\right)\right) = \alpha^{i}(x) + \beta^{1}(x)\kappa^{1,i}(t) + \beta^{2}(x)\kappa^{2,i}(t).$$

Model 3 – copula-Lee-Carter:

$$\log\left(m^{i}\left(x,t\right)\right) = \alpha^{i}(x) + \beta^{i}(x)\kappa^{i}(t),$$

	Li and Lee	CAE	Copula-Lee-Carter
BIC	150236	156977	150866
$\mathbb{P}\left[LDIV \ge 3.4\%\right]$	0.171%	0.003%	0.113%
$\mathbb{P}\left[LDIV \ge 3.5\%\right]$	0.129%	0.002%	0.085%
$\mathbb{P}\left[LDIV \ge 3.6\%\right]$	0.093%	0.001%	0.077%
$\mathbb{P}\left[LDIV \geq 3.7\%\right]$	0.071%	0.001%	0.053%
$\mathbb{P}\left[LDIV \geq 3.8\%\right]$	0.053%	0.000%	0.037%
$\mathbb{P}\left[LDIV \geq 3.9\%\right]$	0.038%	0.000%	0.031%
99.5 quantile	0.081	0.001	0.063
Conditional EL (Prob.)	47.368%	33.333%	55.752%
$\mathbb{E}\left[Payoff ight]$	49.956	49.999	49.978

Table: Distribution of the LDIV and expected value of the payoff for the three models. The first row shows the BIC of the fitted models.

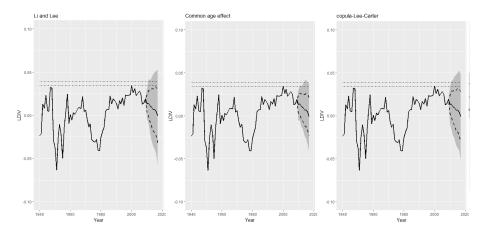


Figure: Fan charts of the simulated LDIV for the three models.

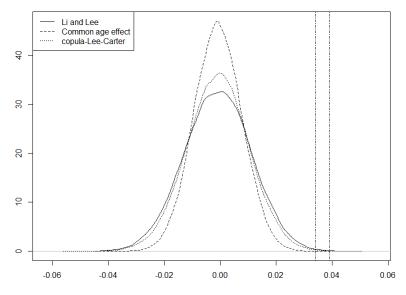


Figure: Densities of the simulated LDIV for the three models.

Hanbali,	Linders	and	Dhaene
----------	---------	-----	--------

Modeling the dependence given the marginal distributions

	Gaussian	Gumbel	Galambos
BIC	-14.939	-14.025	-13.951
$\mathbb{P}\left[LDIV \ge 3.4\%\right]$	0.113%	0.085%	0.103%
$\mathbb{P}\left[LDIV \ge 3.5\%\right]$	0.052%	0.063%	0.081%
$\mathbb{P}\left[LDIV \ge 3.6\%\right]$	0.077%	0.048%	0.060%
$\mathbb{P}\left[LDIV \ge 3.7\%\right]$	0.053%	0.032%	0.042%
$\mathbb{P}\left[LDIV \geq 3.8\%\right]$	0.037%	0.024%	0.029%
$\mathbb{P}\left[LDIV \ge 3.9\%\right]$	0.031%	0.019%	0.019%
99.5 quantile	0.063	0.035	0.050
Conditional EL (Prob.)	55.752%	41.176%	48.543%
$\mathbb{E}\left[Payoff ight]$	49.978	49.977	49.973

Table: Distribution of the LDIV and expected value of the payoff for the copula-Lee-Carter model with 3 different copulas.

- Step 1: Upper and lower <u>bounds</u> for spread options.
 - Theory of comonotonicity.

Step 2: Bounds in term of country-specific derivatives.
 Application of Step 1.

• **<u>Remark</u>**: The payoff is not convex !

Longevity trend bonds and spread options

• The payoff of the Swiss Re Kortis bond:

$$\mathsf{Payoff} = \begin{cases} 0, & \text{if } I(T) \geq \varepsilon. \\ B\left(1 - \frac{I(t) - \alpha}{\varepsilon - \alpha}\right), & \text{if } \varepsilon \geq I(T) \geq \alpha. \\ B, & \text{if } \alpha \geq I(T). \end{cases}$$

where α is the *attachment* point and ε is the *exhaustion* point.

$$\mathcal{K}(\alpha,\varepsilon) = \frac{B}{\varepsilon - \alpha} \left(\varepsilon - \alpha - \left((I(T) - \alpha)_{+} - (I(T) - \varepsilon)_{+} \right) \right).$$

Spread options

Upper and lower bounds

The price C_X of a call option on $X = X_1 - X_2$ admits the following bounds:

$$C_{X^c} \le C_X \le C_{X^l},$$

where:

• $X^{l} = F_{X_{1}}^{-1}(U) - F_{X_{2}}^{-1}(1-U)$, i.e. the Fréchet <u>lower</u> bound. • $X^{c} = F_{X_{1}}^{-1}(U) - F_{X_{2}}^{-1}(U)$, i.e. the Fréchet <u>upper</u> bound.

Spread options

Upper bound

• The counter-monotonic upper bound:

$$C_{X^{l}}[K] = C_{X_{1}}\left[F_{X_{1}}^{-1}\left(F_{X^{l}}\left(K\right)\right)\right] + P_{X_{2}}\left[F_{X_{2}}^{-1}\left(1 - F_{X^{l}}\left(K\right)\right)\right],$$

with

$$F_{X_{1}}^{-1}\left(F_{X^{l}}\left(K\right)\right) - F_{X_{2}}^{-1}\left(1 - F_{X^{l}}\left(K\right)\right) = K.$$

• Proof: See Dhaene et al. (2000).

Spread options

Lower bound

- Consider the function $g(p) = F_{X_1}^{-1}(p) F_{X_2}^{-1}(p)$ and let p^K and $p_1^K, p_2^K, ..., p_{n-1}^K$ be n solutions of g(p) = K.
- The comonotonic lower bound:

$$C_{X^{c}}\left[K\right] = \max\left\{\mathcal{S}_{1}\left(K\right), \mathcal{S}_{2}\left(K\right)\right\},\,$$

where

$$\begin{cases} S_1(K) = C_{X_1} \left[F_{X_1}^{-1}(p^K) \right] - C_{X_2} \left[F_{X_2}^{-1}(p^K) \right] - \mathcal{B}_n \\ S_2(K) = P_{X_2} \left[F_{X_2}^{-1}(p^K) \right] - P_{X_1} \left[F_{X_1}^{-1}(p^K) \right] + \mathcal{B}_n, \end{cases}$$

and

$$\mathcal{B}_{n} = \sum_{i=1}^{n-1} (-1)^{i+1} \left(C_{X_{1}} \left[t, F_{X_{1}}^{-1} \left(p_{i}^{K} \right) \right] - C_{X_{2}} \left[t, F_{X_{2}}^{-1} \left(p_{i}^{K} \right) \right] \right)$$

Spread option

Lower bound - Heuristic proof

$$\int_{0}^{p_{0}} (g(u) - K)_{+} du + \sum_{i=0}^{n-2} \int_{p_{i}}^{p_{i+1}} (g(u) - K)_{+} du + \int_{p_{n-1}}^{1} (g(u) - K)_{+} du.$$

$$\int_{0}^{p_{0}} (g(u) - K) du + 0 + \int_{p_{0}}^{p_{3}} (g(u) - K) du + \dots$$

Hanbali, Linders and Dhaene

 \int_{p_0}

Longevity trend bounds

• An upper bound is given by:

$$\mathcal{K}^{+}(\alpha,\varepsilon) = \frac{B}{\varepsilon-\alpha} \bigg((\varepsilon-\alpha) \mathbf{e}^{-r(T-t)} - \bigg(\max\left\{ \mathcal{S}_{1}(\alpha), \mathcal{S}_{2}(\alpha) \right\} \\ - C_{I_{EW}} \left[F_{I_{EW}}^{-1}(F_{I^{l}}(\varepsilon)) \right] - P_{I_{US}} \left[F_{I_{US}}^{-1}(1-F_{I^{l}}(\varepsilon)) \right] \bigg) \bigg).$$

• A lower bound is given by:

$$\mathcal{K}^{-}(\alpha,\varepsilon) = \frac{B}{\varepsilon-\alpha} \left((\varepsilon-\alpha) \mathbf{e}^{-r(T-t)} + \left(\max\left\{ \mathcal{S}_{1}(\varepsilon), \mathcal{S}_{2}(\varepsilon) \right\} - C_{I_{EW}} \left[F_{I_{EW}}^{-1}(F_{I^{l}}(\alpha)) \right] - P_{I_{US}} \left[F_{I_{US}}^{-1}(1-F_{I^{l}}(\alpha)) \right] \right) \right)$$

•

Longevity trend bounds

• The bounds $\mathcal{K}^+(\alpha,\varepsilon)$ and $\mathcal{K}^-(\alpha,\varepsilon)$ cannot be reached.

• **Question**: Can we derive sharp bounds for longevity trend bonds from their comonotonic and counter-monotonic transforms?

Longevity trend bounds

Expected payoff as a function of the Kendall tau

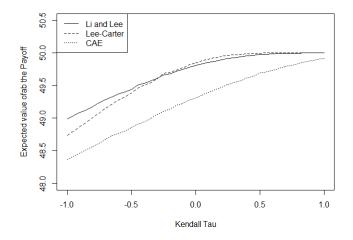


Figure: Expected value of the payoff as a function of the Kendall tau.

Longevity trend upper bound

• The comonotonic expected value is a sharp upper bound:

$$\mathcal{K}^{c}(\alpha,\varepsilon) = \mathbb{E}\left[B\left(1 - \max\left\{\min\left(\frac{I^{c}(T) - \alpha}{\varepsilon - \alpha}, 1\right), 0\right\}\right)\right]$$

• Expression in terms of country-specific derivatives:

$$\mathcal{K}^{c}(\alpha,\varepsilon) = \frac{B}{\varepsilon - \alpha} \bigg(\varepsilon - \alpha - \bigg(\max \left\{ C_{I^{c}}^{(1)}[\alpha], C_{I^{c}}^{(2)}[\alpha] \right\} - \max \left\{ C_{I^{c}}^{(1)}[\varepsilon], C_{I^{c}}^{(2)}[\varepsilon] \right\} \bigg) \bigg).$$

Longevity trend lower bound

Sub-replicating strategy for the intrinsic value

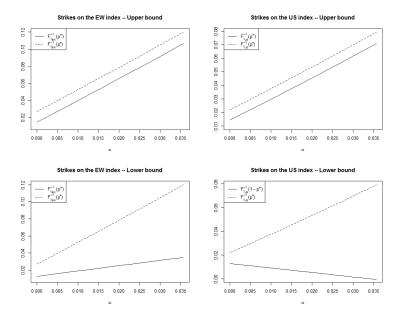
• The counter-monotonic expected value is a sharp lower bound:

$$\mathcal{K}^{l}(\alpha,\varepsilon) = \mathbb{E}\left[B\left(1 - \max\left\{\min\left(\frac{I^{l}(T) - \alpha}{\varepsilon - \alpha}, 1\right), 0\right\}\right)\right].$$

• Expression in terms of country-specific derivatives:

$$\begin{aligned} \mathcal{K}^{l}(\alpha,\varepsilon) &= \frac{B}{\varepsilon-\alpha} \bigg(\varepsilon - \alpha \\ &- \bigg(C_{I_{EW}} \left[F_{I_{EW}}^{-1} \left(F_{I^{l}}(\alpha) \right) \right] - C_{I_{EW}} \left[F_{I_{EW}}^{-1} \left(F_{I^{l}}(\varepsilon) \right) \right] \\ &+ P_{I_{US}} \left[F_{I_{US}}^{-1} \left(1 - F_{I^{l}}(\varepsilon) \right) \right] - P_{I_{US}} \left[F_{I_{US}}^{-1} \left(1 - F_{I^{l}}(\alpha) \right) \right] \bigg) \bigg) \end{aligned}$$

Illustration of the strikes



Conclusions

• Focus on longevity (trend) bonds.

- Highlight the inconsistencies between multi-population projections in the analysis of the payoff.
- Propose a safeguard against multi-population model risk, based on:
 - the well-developped single-population models, or
 - observed country-specific derivative prices.

Thank You