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Summary

Focus: Longevity (trend) bonds.

Question: How do multi-population models behave in the analysis
of the payoff?

Answer: We find some inconsistencies between the different
models, especially in the tail of the distribution.

Solution: Derive upper and lower bounds based on
country-specific derivatives.
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Coping with the systematic longevity risk

The systematic risk is born by the insurer.
I Natural Hedging.

The systematic risk is born by the individuals.
I Tontine schemes or survival funds.
I Group-Self-Annuitization.
I Updating mechanisms.

The systematic risk is born by a third party.
I Buy-Outs and Buy-Ins.
I Longevity Swaps.
I Longevity derivatives.
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Longevity derivatives
Blake et al. (2013)

Mortality Forwards.
I e.g. Lucida q-forward.

(CAT) Mortality bonds.
I e.g. Swiss Re Vita bonds.

Longevity (trend) bonds.
I e.g. EIB/BNP, Kortis bond,
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Swiss Re Kortis longevity bond

Annualized mortality improvements over n years:

Age-specific index for EW population:

IxEW (t) = 1−
(

mEW (x, t)

mEW (x, t− n)

) 1
n

,

Age-specific index for US population:

IyUS(t) = 1−
(

mUS(y, t)

mUS(y, t− n)

) 1
n

.
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Swiss Re Kortis longevity bond

Annualized mortality improvement indices:

For EW males aged 75-85:

IEW (t) =
1

xN − x1 + 1

xN∑
x=x1

IxEW (t),

For US males aged 55-65:

IUS(t) =
1

yN − y1 + 1

yN∑
y=y1

IyUS(t).
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Swiss Re Kortis longevity bond
Longevity Divergence Index

Longevity Divergence Index Value at time t:

I(t) = IEW (t)− IUS(t).

−→ Hedging a portfolio of annuities from the EW cohort and life
assurances from the US cohort.
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Swiss Re Kortis longevity bond
Payoff

Source: Adapted from Blake et al. (2013).
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Swiss Re Kortis longevity bond
Payoff

The payoff of the Swiss Re Kortis bond:

Payoff =


0, if I(T ) ≥ ε.
B
(
1− I(t)−α

ε−α

)
, if ε ≥ I(T ) ≥ α.

B, if α ≥ I(T ).

where α is the attachment point and ε is the exhaustion point.
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Longevity trend bonds

Analyzing the payoff of longevity trend bonds requires a
multi-population model.
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Multi-population modeling

Model 1 – Li and Lee (2005):

log
(
mi (x, t)

)
= αi(x) + βi(x)κi(t) + β(x)κ(t).

Model 2 – Common-Age-Effect, Kleinow (2015):

log
(
mi (x, t)

)
= αi(x) + β1(x)κ1,i(t) + β2(x)κ2,i(t).

Model 3 – copula-Lee-Carter:

log
(
mi (x, t)

)
= αi(x) + βi(x)κi(t),
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Analysis of the Kortis bond payoff

Li and Lee CAE Copula-Lee-Carter

BIC 150236 156977 150866

P [LDIV ≥ 3.4%] 0.171% 0.003% 0.113%
P [LDIV ≥ 3.5%] 0.129% 0.002% 0.085%
P [LDIV ≥ 3.6%] 0.093% 0.001% 0.077%
P [LDIV ≥ 3.7%] 0.071% 0.001% 0.053%
P [LDIV ≥ 3.8%] 0.053% 0.000% 0.037%
P [LDIV ≥ 3.9%] 0.038% 0.000% 0.031%

99.5 quantile 0.081 0.001 0.063
Conditional EL (Prob.) 47.368% 33.333% 55.752%

E [Payoff] 49.956 49.999 49.978

Table: Distribution of the LDIV and expected value of the payoff for the three
models. The first row shows the BIC of the fitted models.
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Analysis of the Kortis bond payoff

Figure: Fan charts of the simulated LDIV for the three models.
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Analysis of the Kortis bond payoff

Figure: Densities of the simulated LDIV for the three models.
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Analysis of the Kortis bond payoff
Modeling the dependence given the marginal distributions

Gaussian Gumbel Galambos

BIC −14.939 −14.025 −13.951

P [LDIV ≥ 3.4%] 0.113% 0.085% 0.103%
P [LDIV ≥ 3.5%] 0.052% 0.063% 0.081%
P [LDIV ≥ 3.6%] 0.077% 0.048% 0.060%
P [LDIV ≥ 3.7%] 0.053% 0.032% 0.042%
P [LDIV ≥ 3.8%] 0.037% 0.024% 0.029%
P [LDIV ≥ 3.9%] 0.031% 0.019% 0.019%

99.5 quantile 0.063 0.035 0.050
Conditional EL (Prob.) 55.752% 41.176% 48.543%

E [Payoff] 49.978 49.977 49.973

Table: Distribution of the LDIV and expected value of the payoff for the
copula-Lee-Carter model with 3 different copulas.
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Step 1: Upper and lower bounds for spread options.
I Theory of comonotonicity.

Step 2: Bounds in term of country-specific derivatives.
I Application of Step 1.

Remark: The payoff is not convex !
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Longevity trend bonds and spread options

The payoff of the Swiss Re Kortis bond:

Payoff =


0, if I(T ) ≥ ε.
B
(
1− I(t)−α

ε−α

)
, if ε ≥ I(T ) ≥ α.

B, if α ≥ I(T ).

where α is the attachment point and ε is the exhaustion point.

K(α, ε) = B
ε−α

(
ε− α−

(
(I(T )− α)+ − (I(T )− ε)+

))
.
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Spread options
Upper and lower bounds

The price CX of a call option on X = X1 −X2 admits the following
bounds:

CXc ≤ CX ≤ CXl ,

where:

X l = F−1
X1

(U)− F−1
X2

(1− U), i.e. the Fréchet lower bound.

Xc = F−1
X1

(U)− F−1
X2

(U) , i.e. the Fréchet upper bound.
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Spread options
Upper bound

The counter-monotonic upper bound:

CXl [K] = CX1

[
F−1
X1

(FXl (K))
]
+ PX2

[
F−1
X2

(1− FXl (K))
]
,

with
F−1
X1

(FXl (K))− F−1
X2

(1− FXl (K)) = K.

Proof: See Dhaene et al. (2000).
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Spread options
Lower bound

Consider the function g(p) = F−1
X1

(p)− F−1
X2

(p) and let pK and
pK1 , p

K
2 , ..., p

K
n−1 be n solutions of g(p) = K.

The comonotonic lower bound:

CXc [K] = max {S1 (K) ,S2 (K)} ,

whereS1 (K) = CX1

[
F−1
X1

(
pK
)]
− CX2

[
F−1
X2

(
pK
)]
− Bn

S2 (K) = PX2

[
F−1
X2

(
pK
)]
− PX1

[
F−1
X1

(
pK
)]

+ Bn,

and

Bn =

n−1∑
i=1

(−1)i+1
(
CX1

[
t, F−1

X1

(
pKi
)]
− CX2

[
t, F−1

X2

(
pKi
)])

.
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Spread option
Lower bound - Heuristic proof

∫ p0

0
(g(u)−K)+ du+

n−2∑
i=0

∫ pi+1

pi

(g(u)−K)+ du+

∫ 1

pn−1

(g(u)−K)+ du.

S1 (K) = 0 +

∫ p1

p0

(g(u)−K) du+ 0 +

∫ p3

p2

(g(u)−K) du+ ...
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Longevity trend bounds

An upper bound is given by:

K+ (α, ε) =
B

ε− α

(
(ε− α)e−r(T−t) −

(
max {S1 (α) ,S2 (α)}

− CIEW

[
F−1
IEW

(FIl (ε))
]
− PIUS

[
F−1
IUS

(1− FIl (ε))
]))

.

A lower bound is given by:

K− (α, ε) =
B

ε− α

(
(ε− α)e−r(T−t) +

(
max {S1 (ε) ,S2 (ε)}

− CIEW

[
F−1
IEW

(FIl (α))
]
− PIUS

[
F−1
IUS

(1− FIl (α))
]))

.
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Longevity trend bounds

The bounds K+ (α, ε) and K− (α, ε) cannot be reached.

Question: Can we derive sharp bounds for longevity trend bonds
from their comonotonic and counter-monotonic transforms?
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Longevity trend bounds
Expected payoff as a function of the Kendall tau

Figure: Expected value of the payoff as a function of the Kendall tau.
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Longevity trend upper bound

The comonotonic expected value is a sharp upper bound:

Kc(α, ε) = E
[
B

(
1−max

{
min

(
Ic(T )− α
ε− α

, 1

)
, 0

})]
.

Expression in terms of country-specific derivatives:

Kc(α, ε) =
B

ε− α

(
ε− α−

(
max

{
C

(1)
Ic [α] , C

(2)
Ic [α]

}
− max

{
C

(1)
Ic [ε] , C

(2)
Ic [ε]

}))
.
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Longevity trend lower bound
Sub-replicating strategy for the intrinsic value

The counter-monotonic expected value is a sharp lower bound:

Kl(α, ε) = E
[
B

(
1−max

{
min

(
I l(T )− α
ε− α

, 1

)
, 0

})]
.

Expression in terms of country-specific derivatives:

Kl(α, ε) =
B

ε− α

(
ε− α

−
(
CIEW

[
F−1
IEW

(FIl (α))
]
− CIEW

[
F−1
IEW

(FIl (ε))
]

+ PIUS

[
F−1
IUS

(1− FIl (ε))
]
− PIUS

[
F−1
IUS

(1− FIl (α))
]))

.
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Illustration of the strikes
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Conclusions

Focus on longevity (trend) bonds.

Highlight the inconsistencies between multi-population projections
in the analysis of the payoff.

Propose a safeguard against multi-population model risk, based
on:

I the well-developped single-population models, or
I observed country-specific derivative prices.
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Thank You
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