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Introduction Motivation

Motivation

Why consider heterogeneity in mortality modelling
o High uncertainty in mortality development.

o Systematic mortality risk (longevity risk)
o Mortality heterogeneity

o Key to the fair pricing of mortality-linked products.
o Increasing attention has been paid on mortality heterogeneity.
Why use health status to identify heterogeneity

o Directly linked to the mortality compared to health risk factors or
socio-economy status.

o Health care costs are significant to both individuals and the
government.
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Introduction Literature Review

Literature Review |

@ Stochastic mortality models — systematic mortality risk
o Discrete time stochastic mortality models
o Including Lee-Carter models (Lee and Carter, 1992) and CBD models
(Cairns et al., 2006).

o Time-series models popular in modeling mortality trend.

o Not compatible with the valuation of mortality-linked products.
o Continuous time stochastic mortality models

o Affine term structure model (ATSM) (Duffie and Kan, 1996; Blackburn
and Sherris, 2013).

o Satisfy important requirements for applications (Schrager, 2006) and
proved to be appropriate in fitting historical mortality data (Blackburn
and Sherris, 2013).

o No clear link between model and human ageing process (Liu and Lin,
2012).
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Introduction Literature Review

Literature Review I

@ Mortality models with heterogeneity
o Observed Heterogeneity Models
o Cox proportional hazards model (Cox, 1972).

o Generalized Linear Mixed Models (Meyricke and Sherris, 2013).
o Limited by high data demand.

o Unobserved Heterogeneity Models — model heterogeneity mortality
from standard mortality
o Frailty models (Vaupel et al., 1979; Manton et al., 1986; Su and
Sherris, 2012).

o Markov ageing models (MAMs) (Le Bras, 1976; Lin and Liu, 2007; Su
and Sherris, 2012; Liu and Lin, 2012; Sherris and Zhou, 2014).
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Introduction

Research Aims |

Markov Ageing Models (MAMs)

» Deterministic MAMs (Le Bras, 1976; Lin

Research Aims

and Liu, 2007; Su and Sherris, 2012)
» Stochastic MAMs
* subordinate time change process + no
time trend in intensities (Liu and Lin,
2012)
* Subordinate time change process + time
trend in intensities (Sherris and Zhou, [
2014) \

Observable Health Status

Affine Term Structure Models (ATSMs)

» Single Cohort Mortality Models (Dahl,
2004; Biffs, 2005; Dahl and Moller, 2006;
Schrager, 2006)

# Multi-cohort Mortality Models (Blackburn
and Sherris, 2013; Jevtic et al., 2013; Xu et
al,, 2015)

7 More direct relationship with mortality than
socio-economic status (Sherris and Zhou, 2014)

2001)
# Influencing factors for annuities purchase (Turra
and Mitchell, 2004)

> Determinant of survival probabilities (Hurd et al.

Yulong Li (UNSW/CEPAR)

Extending the framework of Sherris and
Zhou (2014) by modeling mortality
intensities in MAMs with stochastic affine
processes rather than simple parametric
functions
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Introduction Research Aims

Research Aims Il

o Develop a multiple state mortality model with heterogeneity
o Stochastic mortality intensities following affine type processes.
o Observable health status as heterogeneity factors.

o Calibrate to (Australian) cohort mortality data and cross sectional
health data

o Capturing uncertainty of mortality dynamics in both the aggregated
level and health status levels.

o Projecting of health distribution development.
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(@ Model Development
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Model Development Previous MAMs

Markov Ageing Models (MAM:s)

@ Ageing process is modeled in terms of changes in physiological

functions.

@ Physiological age:
o a relative health index representing the degree of ageing;
o a range of physiological ages to represent heterogeneity;
o higher physiological ages can be viewed as worse health status with

higher mortality rates.

@ Phase-type distribution for the time until death.
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Model Development Previous MAMs

Deterministic MAMs — Lin and Liu(2007), Su and
Sherris(2012)

@ Model based on 'physiological age’.
@ n transient states and 1 absorbing state (death).
@ Transition rates matrix:

—(M+aq1) A1 0 .0
0 —()\2+q2) Ao 0
A= 0 0 —(A34+4¢g3) ... O ,
0 0 0 .. —Qn

o A; will be constant after finite development periods;
o g; is a function of state / and has no time trend (also include additional
constant parameter to capture the hump ages) .
@ Phase-type distribution: S(t) = aexp(At)e, « stands for initial
distribution. :GPQ 2 @UNSW
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Model Development Previous MAMs

Stochastic MAMs — Liu and Lin(2013), Sherris and
Zhou(2014)

@ Small number of states (5 transient states) - facilitate the
incorporation of health data.

@ Similar underlying multi-state model.

® Subordinate Gamma time process ~; to capture the systematic risk.

@ Sherris and Zhou (2014) make the matrix time-inhomogeneous by
taking into account time trend in transition intensity functions:

o gi(t)=axebt +¢,
° )\,‘(t) =m; X (t— 1)+ n;.
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Model Development Model Definitions

Model Definitions |

@ 4 level health status and one absorbing death state.

@ Time-inhomogeneous transition intensity matrix A(t) :

—(A1,e + pa,t) ALt 0 0
0 —(/\2,t + Mz,t) /\2,t 0
0 0 *(>\3,t + ,U3,t) >\3,t
0 0 0 — 4

® The time until death will then follows a phase-type distribution with
representation (7o, A(t)), where g is the initial health distribution.
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Model Development Model Definitions

Model Definitions Il

@ Health transition intensity: \j; = a;j + b- e?

o a; — status dependent health transition intensity;

o b-et — ageing trend of health transition intensities for each status.
® Mortality intensity: fi;

o Instantaneous mortality intensity: p;(t) = X(t) + Yi(t)

o X(t) — population development factor; Y;i(t) — health status adjusting
factor. (Non-mean reverting stochastic processes)

o Average force of moratliy:

file, 7) = - 2Dy - 2L D)

C(t7 T) _ Ci(t7 T)
T—t T—t
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Model Development Model Definitions

Model Definitions Il

® Phase-type properties (Lin and Liu, 2007; Sherris and Zhou, 2014):
o The survival probability in t years' time:

S(t) = moexp <Z /\(5)) e,
s=1

where e is the column vector of ones.

o The probability for an individual alive at time t is in state i

- Pi(t)
i(t)=P(Je=i| T = ’
7i(t) (Je=i|T>t) B0
where .
Pi(t)=P(Je =i, T > t) = [moe=2 "],
7(t) = [m1(t), ma(t), - -+, ma(t)] represent the health distribution at
time t.
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Model Development Data Source

Data Source

The model was calibrated to mortality and health data for Australian
population (male and female combined).

o Human Mortality Database(HMD): one year death rates and life
tables (1921-2013), cohort death rates can be derived from this.

o WHO mortality database: number of deaths from each health
condition + corresponding population in each 5 year interval from age
5 to 84, up to year 2015.

o National Health Survey: prevalence of long-term conditions: 10 year
interval from age 15 to 75, across year 2007-08, 2011-12 and 2014-15.
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Model Fitting

3 Model Fitting
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Model Fitting Health Status Classification

Health Status Classification

@ Severity Index

Index value — yearly death rate for each ICD chapter

yearly prevalence in that chapter

@ Health Status Classification
o H1: ICD chapter 4,5,7,8,12,13,14,16
o H2: ICD chapter 3,6,9,10,11
o H3: ICD chapter 1,15
o H4: ICD chapter 2
Note: We use International Classification of Diseases (ICD) to define the health
conditions.
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Model Fitting Mortality Intensities

Mortality Intensities |

@ Aggregated Mortality intensities
o Estimation Method — Kalman Filter Algorithm
o uf = X(t), dX(t) = aX(t)dt + adW(t)
o Measurement equation:

] l—e" c@)

Fio(t, t+1) 1 %z C(2) ex(t)
S e B RO I Y I
fio(t, t + n) 1 C(n) en(t)

o State transition equation:

Xe = ®Xee14+1:, ne~ N(O,Q),

0_2

Y _ _ Q2a
where ® = e® and Q = 20[(1 e“Y).
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Model Fitting Mortality Intensities

Mortality Intensities |l

o Estimation Results

Estimated force of mortality surface o
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Figure: & = 0.0937, ¢ = 3.6046e — 4
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Model Fitting Mortality Intensities

Mortality Intensities |l

@ Status Dependent Mortality intensities
o Estimation Method
o pi(t) = X(t) + Yi(t)
o dYi(t) = a; Yi(t)dt + o;dWi(t)

o Minimizing the calibration error:

0 = argminel.J > (wi(r) = i(7))?,

r=1

where 0; = («j, 0i), pi(7) from true data and fi;(7) from affine model
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Model Fitting Mortality Intensities

Mortality Intensities [V

o Data Analysis
o Period Force of Mortality — 2007/2011

Year 2007 Year 2011
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Model Fitting Mortality Intensities

Mortality Intensities V

o Cohort Force of Mortality — 2007,/60,2007 /65
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Model Fitting Health Transition Intensities

Health Transition Intensities |

@ Estimation Method
) /\,‘71» =aj+b- e”,i: 1,2,3
o Getting health distribution from prevalence data

o Minimizing the calibration error:

n

8" = argming, | 3 (w(r) — #(7))?

=1

where 7(t) = [m1(t), m2(t), ..., ma(t)] and 8 = (a;, b, ¢)
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Model Fitting Health Transition Intensities

Health Transition Intensities Il

@ Data Analysis
o Health Distribution — Age Trend

Health Distribution Development--2007/50 Health Distribution Development--2007/55
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Model Fitting

Health Transition Intensities 1]

o Health Distribution — Cohorts Comparison

Health Transition Intensities

Health Distribution -- Cohort comparision/2007
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Summary
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Summary

Summary

@ Focusing on establishing a multiple state mortality model considering
health heterogeneity.

@ Aims to better capturing the trend and uncertainty of mortality
development by involving the ATSMs into MAMs.

® Working on fitting the model by combing the health and status
dependent mortality data.

@ Future work: link to retirement product design and retirement
planning.
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