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Motivation

Socio-economic differentiation in mortality

50 60 70 80 90

Age

-6

-5

-4

-3

-2

-1

L
o
g

 m
o

rt
a
lit

y

2001

50 60 70 80 90

Age

-6

-5

-4

-3

-2

-1

L
o
g

 m
o

rt
a
lit

y

2008

50 60 70 80 90

Age

-6

-5

-4

-3

-2

-1

L
o
g

 m
o

rt
a
lit

y

2015

Figure: Logarithm central mortality rates by IMD decile (red: poor,

green: middle, black: wealthy), England

(Data:https://goo.gl/AJGrq6)

Higher socio-economic profiles (sub-populations) enjoy lower

mortality rates in the national mortality

https://goo.gl/AJGrq6
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Motivation

Is socio-economic differentiation exist also in Insured
mortality?

If so, how this differentiation moves in “leve” and “trend”?

How Uncertainty is defined for differentiated mortality?

Business motivation behind Differentiation: flexible and fair

price.

What is the pricing implications of such socio-economic
differentiation?

Poor people compensate for rich people when “one price”.

Undesirable wealth transfer from the low-income profiles to

high-income profiles.
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Existing models for socio-economic mortality

differentiation

Classical actuarial approach: treat socioeconomic
attributes as traditional differentiator (e.g., gender, age) in
the life table

Divide the portfolio into subpopulations specific to gender,

age, period, and socioeconomic attributes....

Cells of these life tables are usually sparse and difficult to

make useful statistical inference. Special treatments are

needed for continuous socioeconomic attributes.

Gschlössl et al. [2011] suggest regression analysis as an

appropriate tool to estimate mortality differentials
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Existing models for socio-economic mortality

differentiation

Regression analysis: treat socioeconomic attributes as
independent variables to explain the individual death/alive
response.

Proportional hazard model, e.g., Cox [1992]

Survival analysis, e.g., Richards [2008]

Poisson regression, e.g.,Gschlössl et al. [2011]

Logistic regression, e.g., Madrigal et al. [2011]

National mortality rates are overlooked in Differentiated

experienced mortality, in these regression analyses.

Current (Pension) business especially in The Netherlands

are built in connection with National Mortality (via the

so-called Experience Factor).
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Existing Models for Socio-economic Mortality

differentiation

Regression analysis and mortality experience: modelling
the shifts from national mortality foreces in term of
socioeconomic differences

For example, van Berkum et al. [2018] employ Poisson

generalized additive model to demonstrate the outstanding

mortality risk factors in a pension fund.

Bridging Plat [2009] (Experienced mortality modelling) and

Gschlössl et al. [2011] (Poisson regression analysis).

Results: Salary info as one of the most significant

differentiators.
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Existing Models for Socio-economic Mortality

differentiation

Little knowledge on how socio-economic mortality
differentiation evolves over time in portfolio.

Portfolio: Socio-economic differentiation only in ”level”? Or

also in ”trend”?

Examining how differentiation evolve over time is crucial
for pricing implications

(1) Limitation of the data (2) The business need of the

flexible & fair pricing. (3) Regulatory concerns.
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Existing pricing

Mortality Differentiation is connected to long-term life/pension

liabilities and evolves the Uncertainty, risk-margins and SCR

estimation in Multi-price structure

Salahnejhad and Pelsser [2016] implemented two Riks-margin

valuations based on the Conditional Scenario Generation

EIOPA risk-margin Price: The aggregate risk-margins along

Best-estimate (by regulators)

Time-consistent Price: Backward iteration of the one-period

operator

Both include Repetitive Conditional Pricing Operators with

high load of calculations

extra developments in Dhaene et al. [2017]

Numerical Method: Regression-based methods to Price with

Conditional Operators see Longstaff and Schwartz [2001]
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This paper

Mortality modelling on an important risk factor, i.e., salary

information,

Relatively better data quality across time in industry.

We build Stochastic Differentiated Experienced Mortality

model by extending Plat [2009].

Easy to integrate in current Business setting (easy to add

more variables).

We render pricing implications on longevity derivatives when
we take into account salary differentiation over time,
comparing to No-differentiation.

Special case of taking mortality differentiation into an index

like SCR, price etc.
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Data

Individual-level panel data traces from 2002 to 2016.

The salary classes are characterized as:

MSC1: modalSali ,t < 1,

MSC2: 1 < modalSali ,t < 2,

MSC3: 2 < modalSali ,t .

modalSali ,t is ratio of the yearly salary of individual i at year

t over the national modal salary at year t.

We focus on the male records from age 33 to 77 with about

99.8% salary information coverage.

Total number of observations is up to 660,000 individuals

with 15 years observations.
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Regression analysis

Di ,t ∼ β0,t + β1,t × agei ,t +
∑
g

βg,t × sgi,t + εi ,t (1)

Di ,t is the death indicator of the pensioner i at the year t. sgi,t is

the salary level indicator.
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Regression analysis: logistics regression
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Figure: The logit of the salary-specific overall central death rates
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Regression analysis: logistics regression

According to the rather logarithm linear relation, logistic

regression works properly for salary differentiation.

Logistic regression is easier to apply in practice.

logit(qgx,t) ∼ β0,t + β1,t ∗ x + βg,t ∗ sgi,t (2)
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Results across ages
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Results across years
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Experience Mortality Modelling: Portfolio

Plat model (with slight modification) for differentiation level

g

log(agx,t) = (
x − d
w − d )f gt + φgx,t (3)

agx,t =
∑s=t+k
s=t m̂gx,sE

g
x,s∑s=t+k

s=t mpopx,s E
g
x,s

,

m̂gx,s is obtained from logistic regression.

φgx,t follows a multivariate normal distribution containing all

the subgroups and the time varying components of the

national population.
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Experience Mortality Modelling: Portfolio
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Figure: The time-varying component of the experience factor. Left to

right: Salary Class 1, 2, 3

“Trend Differentiation” is not not significant for low and high

salary classes.

ARIMA(0,0,0) provides a satisfying fit for the time-varying

component of experience factor for different salary classes.

f gt = δg + vgt (4)
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Experience mortality modelling: portfolio bootstrap

scheme

To reconcile the uncertainty around the logistic estimation of the

experience mortality.

Steps: (1) Re-sample from all individual panels in each bootstrap

with replacements (2) Re-estimate the logistic regression in each

bootstrap. (3) Re-estimate the experience mortality model.
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Experience Mortality Modelling: Population

Lee-Carter model Lee and Carter [1992]:

logmpopx,t = ax + bxkt + εx,t , (5)

kt = d + kt−1 + εt , (6)

Note that εt follows a multivariate normal distribution alongside

with the time varying components of the base and salary

differentiated experience factors.
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Fitting and Projecting Experienced Mortality
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Figure: The observe, fitted, and projections of the portfolio specific

mortality for age 67, 95% bootstrapped confidence intervals

CIs < −− > Uncertainty in each salary class and base class.



Motivation Mortality Modelling Pricing Conclusion References

Uncertainty in Differentiation

Importance of Solvency Capital Requirements (SCR) for

long-dated liabilities (Typical in Life/Pension).

Uncertainty is a core concern in Differentiation specially in

long-term life/pension products.

Uncertainty can be calibrated with respect to the required

SCR (We are still working to escalate this ...!!)

Let us for now see some Pricing Implications instead

Unhedgeable risk involved in mortality/longevity requires

apppropriate Risk-margin (Loading) in Price on top of the

Expected value.

Risk-margin should make sufficient buffer capital to cover

the unexpected risk.
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Payoff and Expected Value

Consider a Simple Endowment with the payoff 1:

Gx(κT ) = f (T px) = 1× Nx(T ) (7)

with maturity T and starting cohort Nx(0) with age x with

underlying mortality trend κt .

Nx(T ) = Nx(0) ∗ T px : Number of survivors at age x + T ,

T px : Projected T -year survival probability random variable.

Conditional Expected Payoff at time t < T :

E [f (Nx(T )) | Nx(t)] , Nx(t) ∼ {κt & ax,t}
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EIOPA Risk-margin Price

For a Multi-period valuation to capture the uncertainty in

long-term, EIOPA suggests:

ΠEIOPAt [f (Ngx (T ))] = e−r(T−t)×[
h(Ngx (t)) + δ

∑T−t
k=1 VaRq

[
h(Ngx (t + k))− h(Ngx (t))

∣∣ BE(Ngx (t + k − 1))
]]
(8)

for each differentiation level g = {L,M,H} where

h(Ngx (t + k)) = E [f (Ngx (T )) | Ngx (t + k)]

Best-estimate unit payoff at time T given the realizations at

time t + k ,

BE(Nx(t + k − 1)) is the best-estimate number of survivors at

t + k − 1 given the initial info at time t.
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EIOPA Risk-Margin for Long-term Liabilities

Measuring the Risk-Margin along the Best-Estimate.

Figure: Simulation of Sample diffusion process for human health over

time.
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EIOPA Risk-Margin for Long-term Liabilities
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The idea of Time-consistency

What if in the the mean-time the Best-estimate didn’t come

true?!

Core Concept: Every Future Middle-term State of the Risk Can

Initiate A New Market.

Tomorrow has a New Story!

Yesterday’s perception doesn’t remain Credible!

Middle-term dynamics on trends and volatility cause Uncertainty

on Uncertainty

Conditional Scenario Generation reflects the imagination of the

what if ... situation.

Middle-term dynamics should be measured by the “Middle-term

(Re)-Valuation”.

Time-consistency constructs the price based on the Middle-term

(Re)-Valuation
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Time-Consistent Risk-margin Price

Take the discrete set {0, 1, 2, ..., T − 1, T} dividing [0, T ],

The backward iteration of the one-period cost-of-capital risk-margin

price can be represented as below:

(T-1, T) : π (Ngx (T − 1)) = ΠCoC [f (Ngx (T )) | Ngx (T − 1)]

(T-2, T-1) : π (Ngx (T − 2)) = ΠCoC [π(Nx(T − 1)) | Ngx (T − 2)]

...

(t, t+1) : π (Ngx (t)) = ΠCoC [π (Ngx (t + 1)) | Ngx (t)]

...

(0, 1) : πTC (Ngx (0)) = ΠCoC [π (Ngx (1)) | Ngx (0)]

(9)

ΠCoCt The one-year Cost-of-Capital price operator:

ΠCoCt [Ngx (t + 1) | Ngx (t)] =

e−r [h(Ngx (0)) + δVaRq [h(Ngx (t + 1))− h(Ngx (0)) | BE(Ngx (t))]] (10)

and h(Ngx (t)) = E [f (Ngx (T )) | Ngx (t)]
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Aggregate Risk-margin in Differentiated Prices

Differentiation creates a segmented/partitioned portfolio

Each differentiation class has smaller & and more

homogeneous groups.

Differentiated prices are built based on the dependent

structure of the underlying mortality.

Differentiated Risk-margins should cover the aggregate

risk-margin of the base (total) portfolio:

RM(L+M +H) ≤ RM(L) + RM(M) + RM(H)
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Pricing results: 50% quantile
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Figure: Longevity bonds for age 40 male
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Pricing results: 50% quantile with 95% CIs
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Conclusion

Our model renders reasonable best estimates alongside with

proper confidence intervals.

Based on our mortality scenarios, we provide three prices of

the differentiated longevity bonds for different maturities.

The pricing results show the price of these bonds are

significantly different between the lowest salary group and

the highest salary group, comparing to the base group.
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