

María Dolores Martínez-Miranda Jens Perch Nielsen Richard Versall

Cass Business School London, October 2013

Background

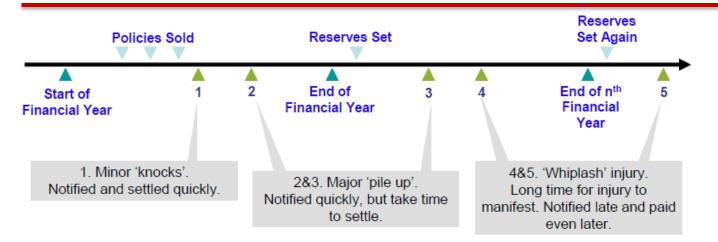
2010 Including Count Data in Claims Reserving

2011 Cash flow simulation for a model of outstanding liabilities based on claim amounts and claim numbers

2012 Double Chain Ladder

2012 Statistical modelling and forecasting in Non-life insurance

2013 Double Chain Ladder and Bornhuetter-Ferguson


2013 Double Chain Ladder, ClaimsDevelopment Inflation and Zero Claims2013 Continuous Chain Ladder

Our aim: a package implementing recent research developments

ACTUARIAL

The problem: the claims reserving exercise

Claims are first notified and later settled - reporting and settlement delays exist.

- Outstanding liability for claims events that have already happened and for claims that have not yet been fully settled.
- □ The objectives:
 - ✓ How large **future claims payments** are likely to be.
 - ✓ The **timing** of future claim payments.
 - ✓ The distribution of possible outcomes: future cash-flows.

Framework: Double Chain Ladder

Payments

RBNS

Reserve = IBNR + RBNS

IBNR: Incurred But Not Reported

RBNS: Reported But Not Settled

Clousure

What is Double Chain Ladder?

A firm **statistical model** which **breaks down the chain ladder estimates into individual components**.

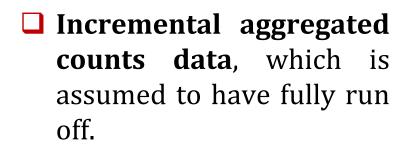
Ocurrence

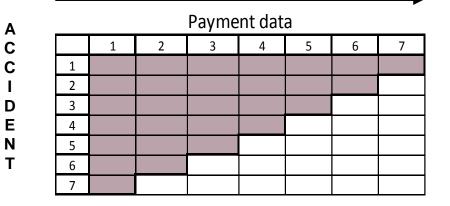
IBNR

Notification

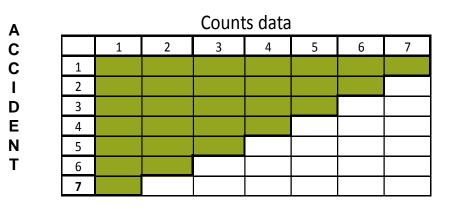
Why?

- ✓ Connection with classical reserving (tacit knowledge)
- ✓ Intrinsic **tail** estimation
- ✓ **RBNS** and **IBNR** claims

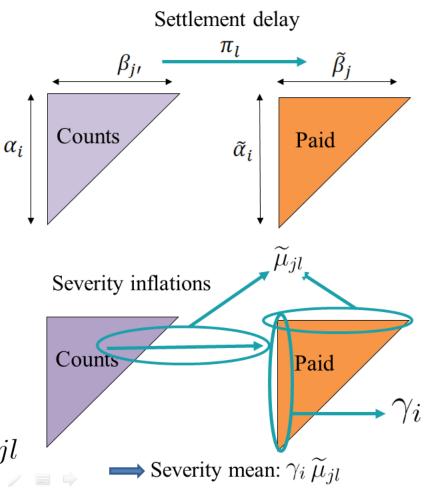

✓ The distribution: full cash-flow



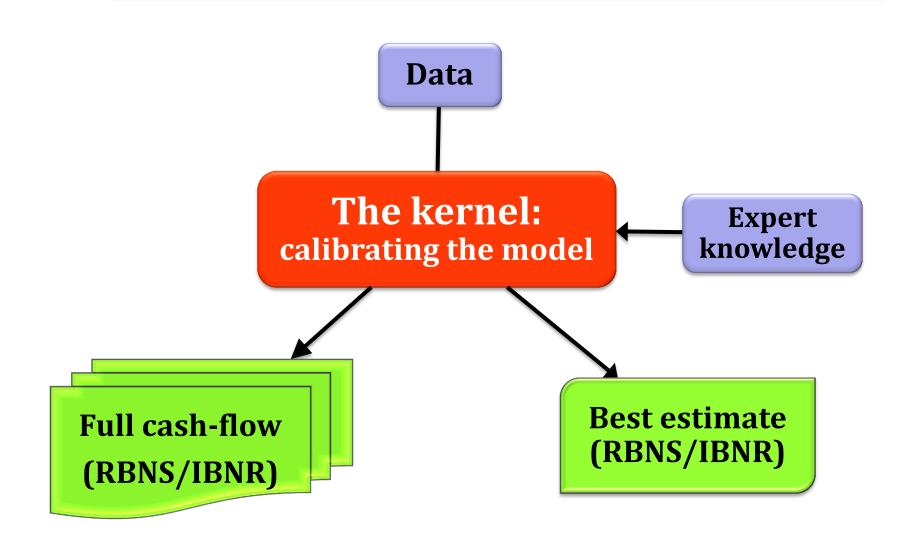
The modelled data: two run-off triangles


- We model annual/quarterly run-off triangles:
 - □ Incremental aggregated payments (paid triangle).

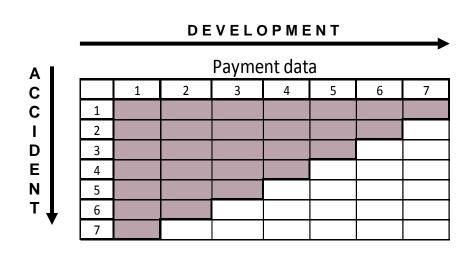
DEVELOPMENT

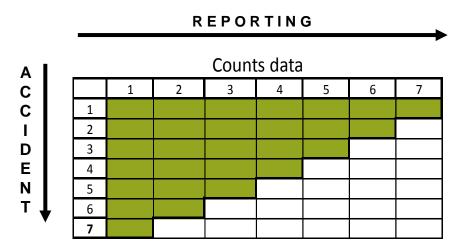


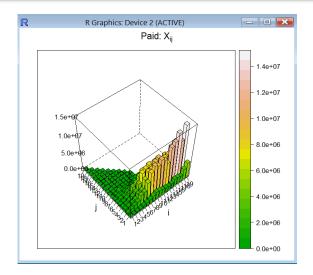
The Double Chain Ladder Model

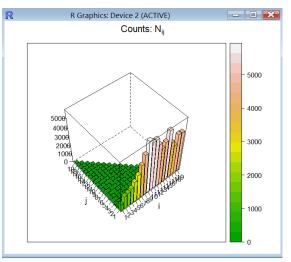

Parameters involved in the model: Ultimate claim numbers: α_i Reporting delay: β_{j} , Settlement delay: π_l Development delay: $\tilde{\beta}_j$ Ultimate payment numbers: $\tilde{\alpha}_i$ Severity:

- \checkmark underwriting inflation: γ_i
- \checkmark delay mean dependencies: $\widetilde{\mu}_{jl}$



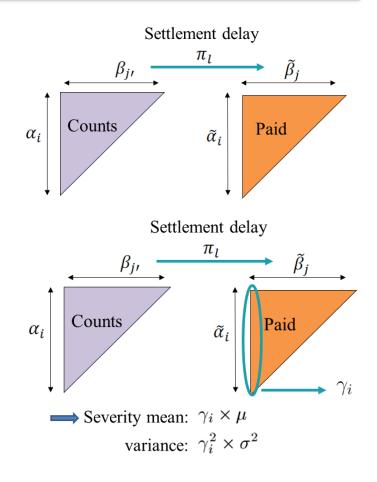

Implementing Double Chain Ladder





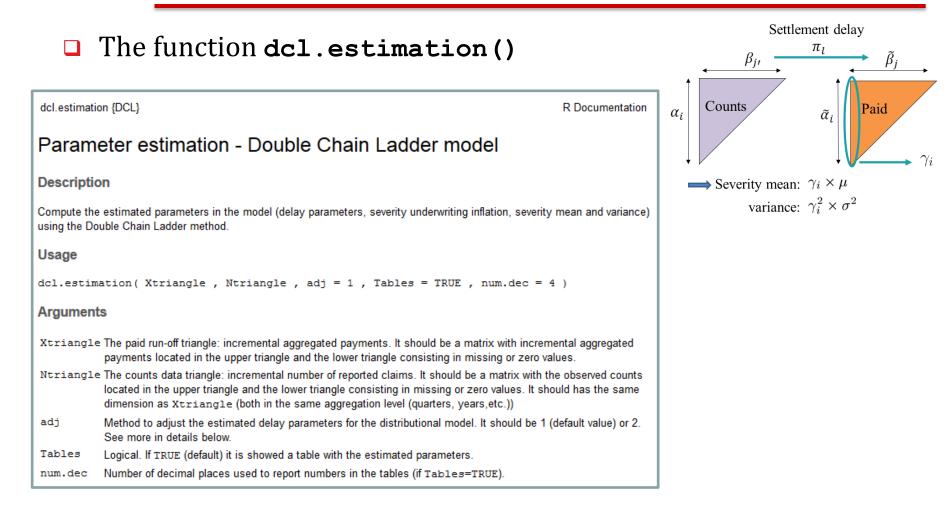
Visualizing the data: the histogram

The kernel: calibrating the model

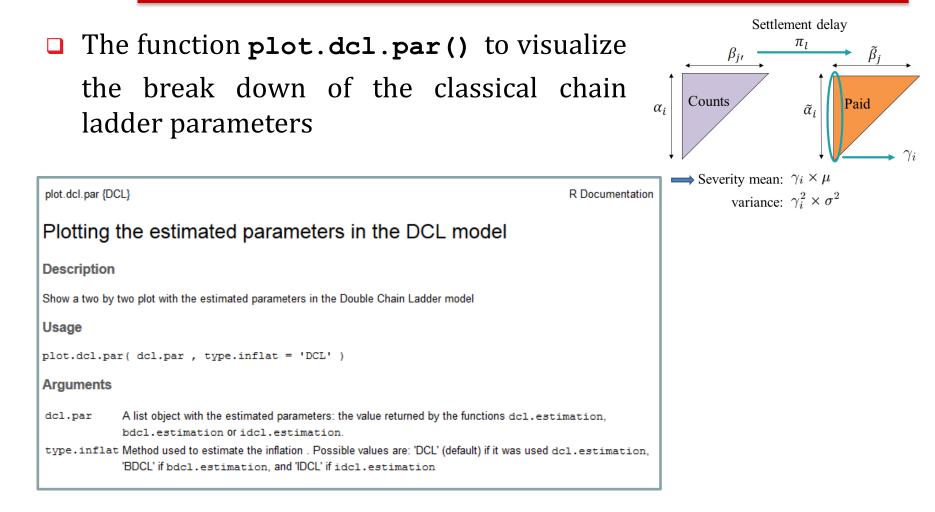

- The available information could make a model infeasible in practice.
- From two run-off triangles, the
 Double Chain Ladder Method
 estimate a model such as:

severity mean:

severity variance: $\sigma^2 \gamma_i^2 \equiv \sigma_i^2$

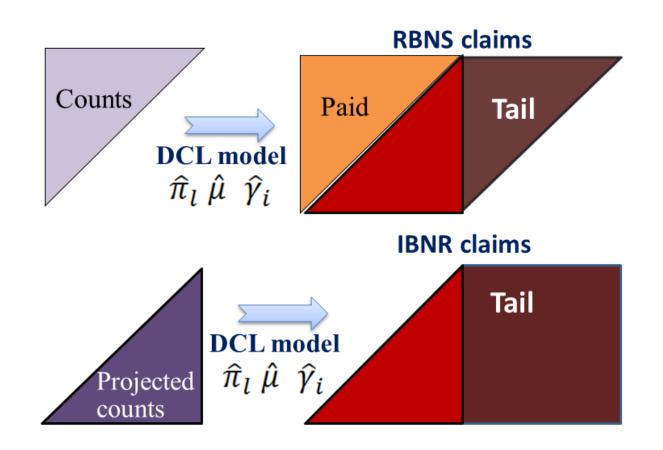

 $\mu \gamma_i \equiv \mu_i$

Classical chain ladder technique is applied twice to give everything needed to estimate.



The kernel: parameter estimation using DCL

The kernel: parameter estimation using DCL


The functions in action: an example

R Console	R Graphics: Device 2 (ACTIVE)		
<pre>> library(DCL) > data(NtriangleBDCL) > data(XtriangleBDCL) > # The DCL parameters > my.dcl.par<-dcl.estimation(XtriangleBDCL,NtriangleBDCL) delay.par delay.prob inflation severity.mean severity.var 1 0.0592 0.0592 1.0000 2579.064 286808926 2 0.3098 0.3098 1.1173 2881.570 358036053 3 0.2032 0.2032 1.4947 3855.014 640796811 4 0.1996 0.1996 1.7461 4503.280 874432486 5 0.1388 0.1388 2.1075 5435.263 1273824141 6 0.0440 0.0440 2.0936 5399.464 125709346 7 0.0227 0.0227 2.2495 5801.697 1451371123 8 0.0095 0.0095 2.1250 5480.521 1295126156</pre>	CL underwriting parameters CL development		
<pre>8 0.0095 0.0095 2.1250 5480.521 1295126156 9 0.0018 0.0018 1.9028 4907.442 1038433681 10 0.0029 0.0029 2.0197 5208.871 1169918179 11 0.0002 0.0002 2.0704 5339.587 1229373075 12 0.0026 0.0026 2.2666 5845.709 1473474978 13 0.0019 0.0019 2.3157 5972.242 1537953134 14 0.0032 0.0032 2.4747 6382.359 1756429648 15 -0.0002 0.0006 2.3829 6145.592 1628530112 16 0.0013 0.0000 2.8391 7322.296 2311867264 17 -0.0004 0.0000 3.1815 8205.383 2903127034 18 0.0000 0.0000 4.1747 10766.824 4998544792 19 0.0000 0.0000 6.7501 17409.045 13068274219 mean.factor mean.factor.adj variance.factor 1 2579.002 2579.064 286808926 > plot.dcl.par(my.dcl.par) ></pre>	underwriting period development period Severity inflation General Genera		

Parameter estimates in two cases: the basic DCL model (only mean specifications) and the distributional model.

The best estimate: RBNS/IBNR split

The best estimate: RBNS/IBNR split using DCL

□ The function dcl.predict()

dcl.predict {DCL}

Pointwise predictions (RBNS/IBNR split)

Description

Pointwise predictions by calendar years and rows of the outstanding liabilities. The predictions are splitted between RBNS and IBNR claims.

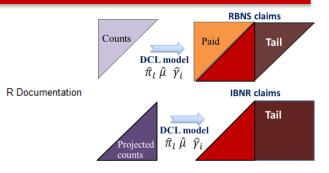
Usage

dcl.predict(dcl.par , Ntriangle , Model = 2 , Tail = TRUE , Tables = TRUE , summ.by="diag", num.dec = 2)

Arguments

- dcl.par A list object with the estimated parameters: the value returned by the functions dcl.estimation, bdcl.estimation or idcl.estimation.
- Ntriangle Optional. The counts data triangle: incremental number of reported claims. It should be a matrix with the observed counts located in the upper triangle and the lower triangle consisting in missing or zero values. It should has the same dimension as the Xtriangle (both in the same aggregation level (quarters, years, etc.)) used to derive dcl.par

Model Possible values are 0, 1 or 2 (default). See more details below.


- Tail Logical. If TRUE (default) the tail is provided.
- Tables Logical. If TRUE (default) it is shown a table with the predicted outstanding liabilities in the future calendar periods (summ.by="diag") or by underwriting period (summ.by="row").

summ.by A character value such as "diag", "row" or "cell".

num.dec Number of decimal places used to report numbers in the tables. Used only if Tables=TRUE

Details

If Model=0 or Model=1 then the predictions are calculated using the DCL model parameters in assumptions M1-M3 (general delay parameters, see Martinez-Miranda, Nielsen and Verrall 2012). If Model=2 the adjusted delay probabilities (distributional model D1-D4) are considered. By

The function in action: an example

						RBNS claim	ms			
R			R Console			Counts Paid T	ail			
			IN CONSOIC			DCL model				
> 1	> pred.by.diag<-dcl.predict(my.dcl.par,NtriangleBDCL) $\hat{\pi}_{l}\hat{\mu}\hat{\gamma}_{i}$									
	Future.years	rbns	ibnr	total	clm	IBNR clair	ms			
1	1	59845052.96	1386631.90	61231684.86	61090912.9					
2	2	41447058.01	7405875.89	48852933.90	48061354.9		ail			
3	3	31016097.53	5610771.34	36626868.87	36266481.8	DCL model				
4	4	17542089.42	5501517.13	23043606.55	22989797.0	Projected $\hat{\pi}_l \hat{\mu} \hat{\gamma}_i$				
5	5	6443018.76	4069044.13	10512062.89	10439464.1					
6	6	3192176.74	1719910.74	4912087.48	4913941.1					
7	7	1445598.60	944953.87	2390552.47	2380120.6					
8	8	675017.48	486952.87	1161970.35	1174086.8					
9	9	642274.45	210295.79	852570.24	848055.6					
10	10	423522.65	168593.53	592116.19	599855.7					
11	11	535548.94	72125.43	607674.37	593718.3					
12	12	404459.01	99337.90	503796.92	495823.4					
13	13	334964.95	74405.59	409370.54	397094.7					
14	14	60022.99	96886.33	156909.31	135553.4					
15	15	0.00	37035.26	37035.26	109484.7					
16	16	0.00	12228.15	12228.15	0.0					
17	17	0.00	6545.30	6545.30	0.0					
18	18	0.00	3691.79	3691.79	0.0					
19	19	0.00	1831.78	1831.78	NA					
20	20	0.00	1013.15	1013.15	NA					
21	21	0.00	518.55	518.55	NA		_			
22		_	. -	_						
23		Summar	v hv di	agonals	future	calendar years), rows	:			
24		Jummar	y by an	6011013	linenc	curendur yeursj, rows	,			
25		lundoru	riting)	nd the i	odividur	al cell predictions				
26		(under w	i ung a	ind the h	iuiviuu	ai cen preulcuons				
27										
28	28	0 00	G 47	6 47	N7					

The full cash-flow: Bootstrapping RBNS/IBNR

- □ The **simplest DCL distributional model** assumes that the mean and the variance of the individual payments (severity) only depends on the underwriting period.
- The following statistical distributions are assumed for each of the components in the model:

Component	Distribution
Count data	Poisson
RBNS delay	Multinomial
Severity	Gamma

The full cash-flow: Bootstrapping using DCL

The function dcl.boot()

dcl.boot {DCL}

R Documentation

Bootstrap distribution: the full cashflow

Description

Provide the distribution of the IBNR, RBNS and total (RBNS+IBRN) reserves by calendar years and rows using bootstrapping.

Usage

dcl.boot(dcl.par , sigma2 , Ntriangle , boot.type = 2 , B = 999 , Tail = TRUE , summ.by = "diag" , Tables = TRUE , num.dec = 2)

Arguments

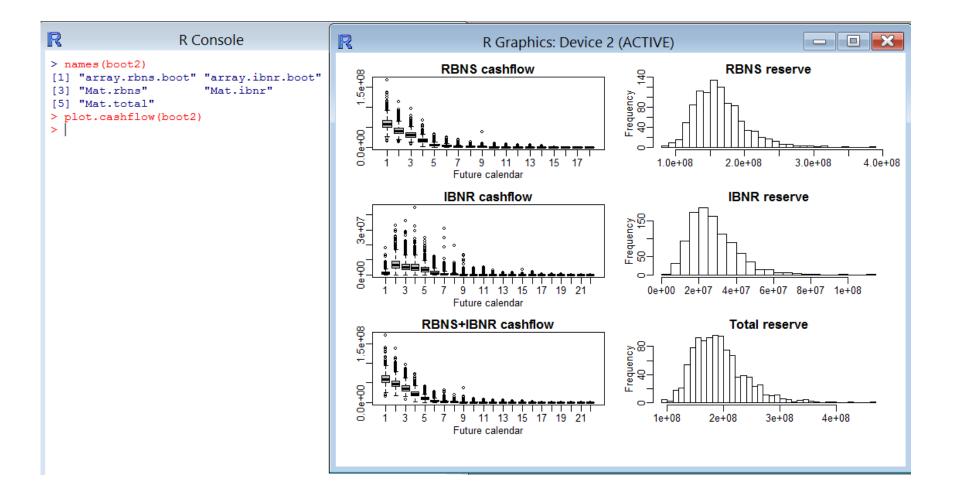
- dcl.par A list object with the estimated parameters: the value returned by the functions dcl.estimation, bdcl.estimation or idcl.estimation.
- sigma2 Optional. The variance of the individual payments in the first underwriting period.
- Ntriangle The counts data triangle: incremental number of reported claims. It should be a matrix with the observed counts located in the upper triangle and the lower triangle consisting in missing or zero values. It should be the same triangle used to get the value passed by the argument dcl.par.

boot.type Choose between values 1, to provide only the variance process, or 2 (default), to take into account the uncertainty of the parameters.

- B The number of simulations in the bootstrap algorithm. The defaul value is 999.
- Tail Logical. If TRUE (default) the tail is provided.
- summ.by A character value such as "diag", "row" or "cell".
- Tables Logical. If TRUE (default) it is showed a table with the summary (mean, standard deviation, 1%, 5%, 50%, 95%, 99%) of the distribution of the outstanding liabilities in the future calendar periods (if summ.by="diag") or by underwriting period (if summ.by="row").
- num.dec Number of decimal places used to report numbers in the tables. Used only if Tables=TRUE

Details

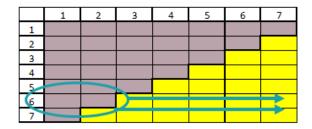
□ The function plot.cashflow()

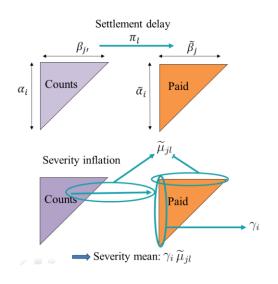

The functions in action: an example

R		- • ×							
<pre>> boot2<-dcl.boot(my.dcl.par,Ntriangle=NtriangleBDCL) [1] "Please wait, simulating the distribution"</pre>									
[1] "Done!"									
p p	eriod	rbns	mean.rbns	sd.rbns	Q1.rbns	Q5.rbns			
1	1	59845052.96	60104639.86	15073076.18	33597995.93	40915229.26			
2	2	41447058.01	41679263.34	11015109.71	22154274.56	27730524.16			
3	3	31016097.53	31146079.93	9826146.21	14928552.44	18278582.96			
4	4	17542089.42	17251007.40	6956163.95	4958809.18	8595612.19			
5	5	6443018.76	6403003.15	3843801.59	1016332.33	2071798.34			
6	6	3192176.74	3510417.33	2623285.96	177136.11	762954.18			
7	7	1445598.60	1597909.78	1873972.33	2517.46	84721.67			
8	8	675017.48	852208.53	1174759.22	0.00	412.15			
9	9	642274.45	536551.31	1424260.00	0.00	0.00			
10	10	423522.65	376713.73	827293.75	0.00	0.00			
11	11	535548.94	164627.71	503755.34	0.00	0.00			
12	12	404459.01	96801.19	355413.76	0.00	0.00			
13	13	334964.95	56962.35	324013.16	0.00	0.00			
14	14	60022.99	13651.87	137771.89	0.00	0.00			
15	15	0.00	95.42	2144.22	0.00	0.00			
16	16	0.00	0.00	0.00	0.00	0.00			
17	17	0.00	0.00	0.00	0.00	0.00			
18	18	0.00	0.00	0.00	0.00	0.00			
19	19	0.00	0.00	0.00	0.00	0.00			
20	20	0.00	0.00	0.00	0.00	0.00			

- A table showing a summary of the distribution: mean, std. deviation, quantiles.
- > Arrays and matrices with the full simulated distributions

The functions in action: an example

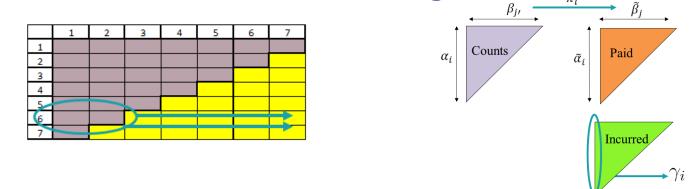




Moving from the (paid) chain ladder mean

Prior knowledge, when it is available, can be incorporated to:

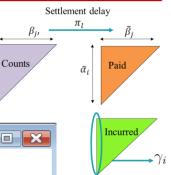
- Provide more realistic and stable predictions: Bornhuetter-Ferguson technique and the incurred data
- Consider in practice more general models: development severity inflation, zero-claims etc.

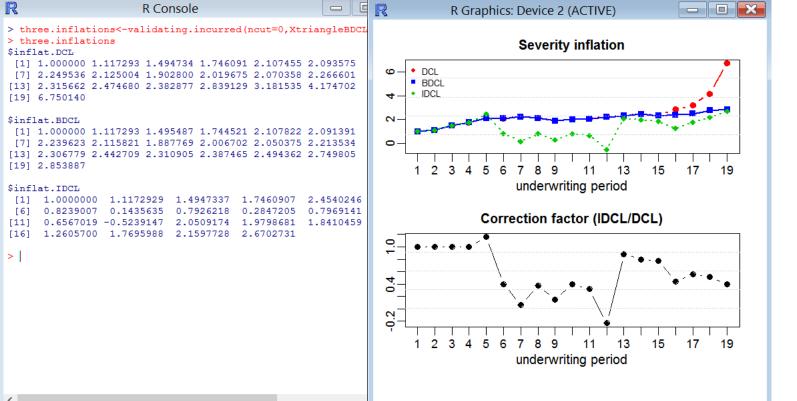


Using incurred data through BDCL and IDCL

□ The BDCL method takes a more realistic estimation of the inflation parameter from the **incurred triangle** Settlement delay

The IDCL method makes a correction in the underwriting inflation to reproduce the incurred chain ladder reserve

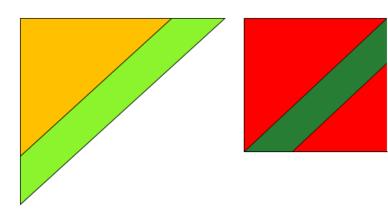

Summary: BDCL and IDCL operate on **3 triangles** and give a different reserve than the paid chain ladder. Both provide the **full cash-flow (RBNS/IBNR)**



BDCL and IDCL in the package

 α_i

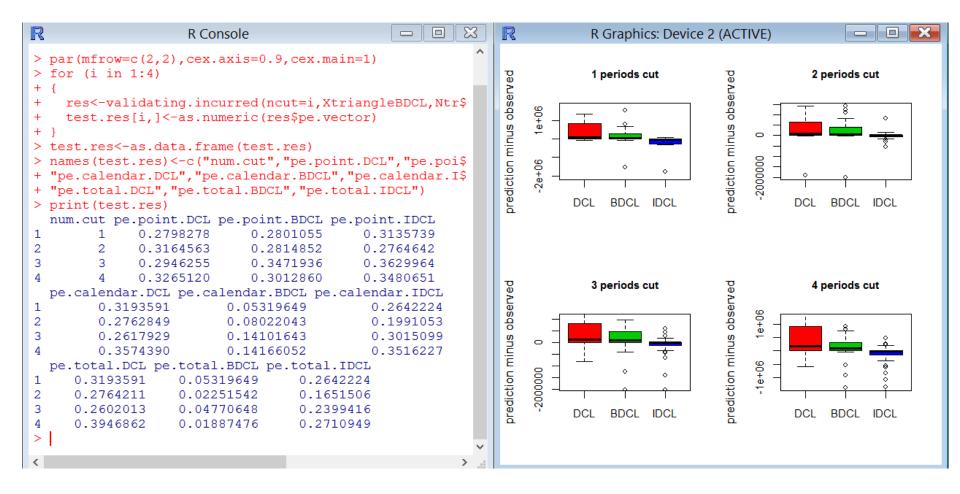
- Functions bdcl.estimation() idcl.estimation()
- Validation strategy: validating.incurred()



Validation

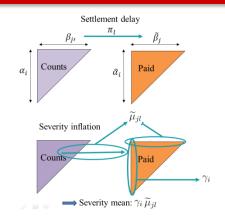
Testing results against experience:

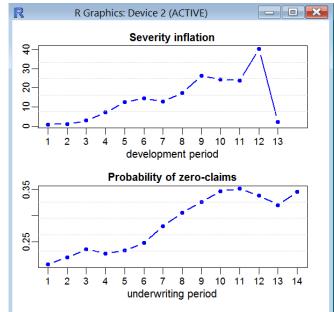
- 1. Cut c=1,2,...,5 diagonals (periods) from the observed triangle.
- 2. Apply the estimation methods.
- 3. Compare forecasts and actual values.



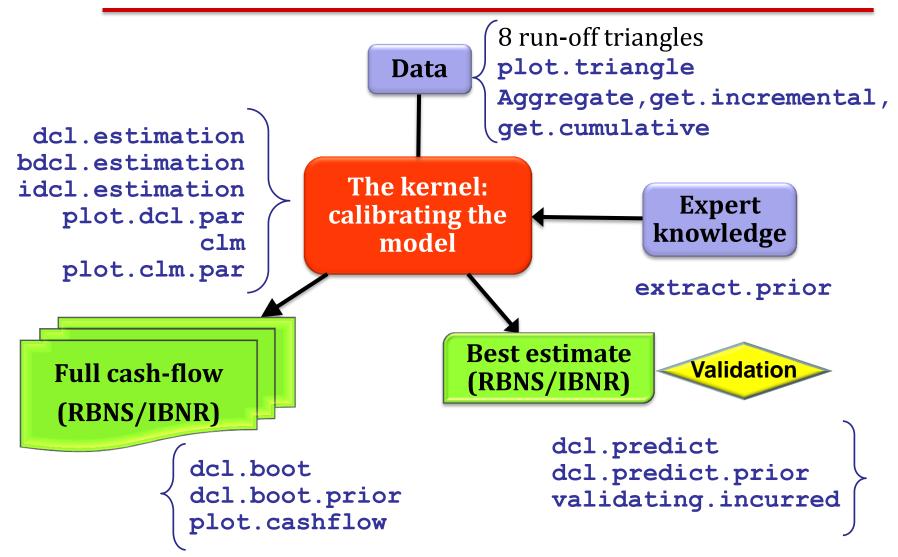
Three objectives:

- Predictions of the individual cells
- Predictions by calendar years
- The prediction of the overall total


Validation strategy: validating.incurred()



Working in practice with a more general model


- Information about: development severity inflation, zero-claims etc. can be incorporated through DCL in a straightforward and coherent way.
- The package provides the functions:
 dcl.predict.prior()
 dcl.boot.prior()
 extract.prior()

Summary: the content of the package

Trying DCL

- □ We look for a **wide audience** (academics, practitioners, students).
- □ The package has been published in the CRAN:

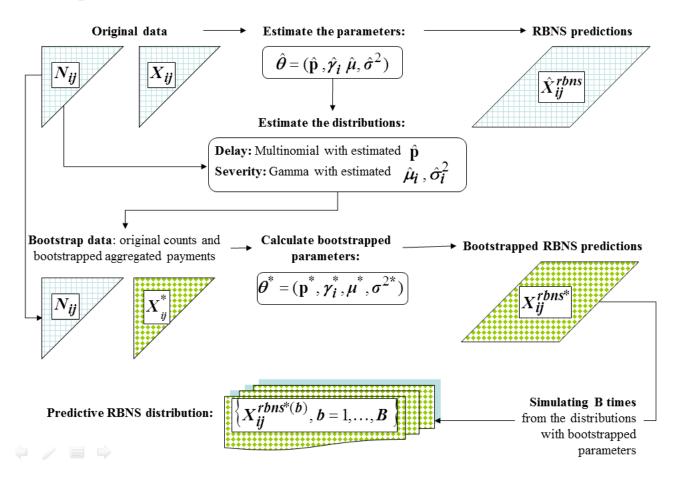
http://cran.r-project.org/web/packages/DCL/index.html

□ Your feedback is very valuable:

María Dolores Martínez-Miranda

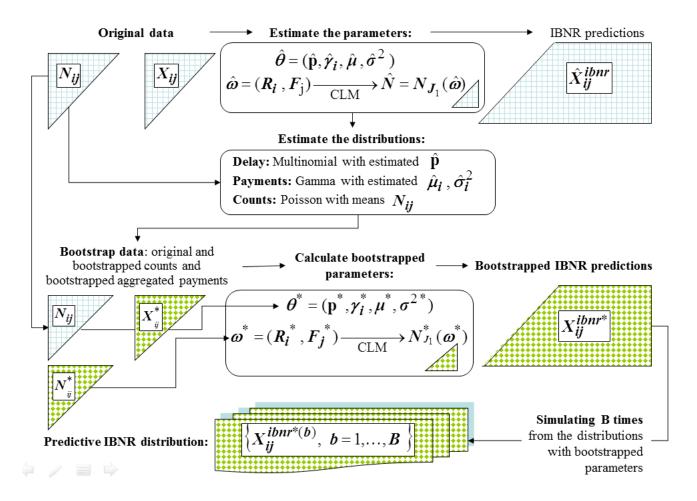
-Maintainer of the DCL package-

mmiranda@ugr.es


Appendix A: code -examples in this presentation

```
library (DCL)
data (NtriangleBDCL)
data(XtriangleBDCL)
# Plotting the data
plot.triangle(NtriangleBDCL,Histogram=TRUE,tit=expression(paste('Counts: ',N[ij]))
plot.triangle(XtriangleBDCL,Histogram=TRUE,tit=expression(paste('Paid: ',X[ij])))
# The kernel: parameter estimation
my.dcl.par<-dcl.estimation(XtriangleBDCL,NtriangleBDCL)
plot.dcl.par(my.dcl.par)
# The best estimate (RBNS/IBNR split)
pred.by.diag<-dcl.predict(my.dcl.par,NtriangleBDCL)
# Full cashflow considering the tail (only the variance process)
boot2<-dcl.boot(my.dcl.par,Ntriangle=NtriangleBDCL)</pre>
plot.cashflow(boot2)
## Compare the three methods to be validated (three different inflations)
data(ItriangleBDCL)
validating.incurred(ncut=0,XtriangleBDCL,NtriangleBDCL,ItriangleBDCL)
test.res<-matrix(NA,4,10)</pre>
par(mfrow=c(2,2),cex.axis=0.9,cex.main=1)
for (i in 1:4)
ſ
  res<-validating.incurred(ncut=i,XtriangleBDCL,NtriangleBDCL,ItriangleBDCL,Tables=FALSE)
  test.res[i,]<-as.numeric(res$pe.vector)</pre>
test.res<-as.data.frame(test.res)</pre>
names(test.res)<-c("num.cut","pe.point.DCL","pe.point.BDCL","pe.point.IDCL",</pre>
"pe.calendar.DCL", "pe.calendar.BDCL", "pe.calendar.IDCL",
"pe.total.DCL", "pe.total.BDCL", "pe.total.IDCL")
print(test.res)
# Extracting information about severity inflation and zero claims
data (NtrianglePrior); data (NpaidPrior); data (XtrianglePrior)
extract.prior(XtrianglePrior, NpaidPrior, NtrianglePrior)
```


Appendix B: Bootstrap methods


Algorithm RBNS - Bootstrapping taking into account parameters uncertainty

Appendix B: Bootstrap methods

 ${\bf Algorithm\, IBNR-} Bootstrapping taking into \ account \ parameters \ uncertainty$

