
A new -package
for statistical

modelling and
forecasting in

non-life insurance

María Dolores Martínez-Miranda
Jens Perch Nielsen
Richard Verrall

Cass Business School
London, October 2013

Background

Our aim: a package implementing recent research developments

2010 Including Count Data in Claims
Reserving

2011 Cash flow simulation for a model
of outstanding liabilities based on
claim amounts and claim numbers

2012 Double Chain Ladder

2012 Statistical modelling and
forecasting in Non-life insurance

2013 Double Chain Ladder and
Bornhuetter-Ferguson

2013 Double Chain Ladder, Claims
Development Inflation and Zero Claims

2013 Continuous Chain Ladder

The problem: the claims reserving exercise

 Claims are first notified and later settled - reporting and settlement
delays exist.

 Outstanding liability for claims events that have already happened
and for claims that have not yet been fully settled.

 The objectives:

 How large future claims payments are likely to be.

 The timing of future claim payments.

 The distribution of possible outcomes: future cash-flows.

Framework: Double Chain Ladder

What is Double Chain Ladder?

A firm statistical model which breaks down the chain ladder
estimates into individual components.

What is required? It works on run-off triangles (adding expert
knowledge if available).

Why?

Connection with classical
reserving (tacit knowledge)

Intrinsic tail estimation

RBNS and IBNR claims

The distribution: full cash-flow

The modelled data: two run-off triangles

We model annual/quarterly
run-off triangles:

 Incremental aggregated
payments (paid triangle).

 Incremental aggregated
counts data, which is
assumed to have fully run
off.

A

C

C

I

D

E

N

T

D E V E L O P M E N T

A

C

C

I

D

E

N

T

R E P O R T I N G

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Payment data

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Counts data

The Double Chain Ladder Model

Ultimate claim numbers:

Reporting delay:

Settlement delay:

Development delay:

Ultimate payment numbers:

Severity:

underwriting inflation:

delay mean dependencies:

Parameters involved in the model:

Implementing Double Chain Ladder

The kernel:
calibrating the model

Data

Expert
knowledge

Best estimate
(RBNS/IBNR)

Full cash-flow

(RBNS/IBNR)

A

C

C

I

D

E

N

T

D E V E L O P M E N T

A

C

C

I

D

E

N

T

R E P O R T I N G

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Payment data

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Counts data

Visualizing the data: the histogram

The kernel: calibrating the model

 The available information could
make a model infeasible in practice.

 From two run-off triangles, the
Double Chain Ladder Method
estimate a model such as:

 severity mean:

 severity variance:

 Classical chain ladder technique
is applied twice to give everything
needed to estimate.

The kernel: parameter estimation using DCL

 The function dcl.estimation()

The kernel: parameter estimation using DCL

 The function plot.dcl.par() to visualize

the break down of the classical chain
ladder parameters

The functions in action: an example

Parameter estimates in two cases: the basic DCL model (only mean
specifications) and the distributional model.

The best estimate: RBNS/IBNR split

The best estimate: RBNS/IBNR split using DCL

 The function dcl.predict()

The function in action: an example

Summary by diagonals (future calendar years), rows
(underwriting) and the individual cell predictions

The full cash-flow: Bootstrapping RBNS/IBNR

 The simplest DCL distributional model assumes that the
mean and the variance of the individual payments (severity)
only depends on the underwriting period.

 The following statistical distributions are assumed for each of
the components in the model:

Component Distribution

Count data Poisson

RBNS delay Multinomial

Severity Gamma

The full cash-flow: Bootstrapping using DCL

 The function dcl.boot()

 The function plot.cashflow()

The functions in action: an example

 A table showing a summary of the distribution: mean, std.
deviation, quantiles.

 Arrays and matrices with the full simulated distributions

The functions in action: an example

Moving from the (paid) chain ladder mean

Prior knowledge, when it is available,
can be incorporated to:

 Provide more realistic and stable
predictions: Bornhuetter-Ferguson
technique and the incurred data

 Consider in practice more general
models: development severity
inflation, zero-claims etc.

Using incurred data through BDCL and IDCL

 The BDCL method takes a more realistic estimation of the
inflation parameter from the incurred triangle

 The IDCL method makes a correction in the underwriting
inflation to reproduce the incurred chain ladder reserve

Summary: BDCL and IDCL operate on 3 triangles and
give a different reserve than the paid chain ladder.
Both provide the full cash-flow (RBNS/IBNR)

BDCL and IDCL in the package

 Functions bdcl.estimation() idcl.estimation()

 Validation strategy: validating.incurred()

Testing results against experience:

1. Cut c=1,2,…,5 diagonals (periods) from the observed triangle.

2. Apply the estimation methods.

3. Compare forecasts and actual values.

 Validation

Three objectives:

 Predictions of the
individual cells

 Predictions by
calendar years

 The prediction of
the overall total

Validation strategy: validating.incurred()

Working in practice with a more general model

 Information about: development
severity inflation, zero-claims etc. can
be incorporated through DCL in a
straightforward and coherent way.

 The package provides the functions:

dcl.predict.prior()

dcl.boot.prior()

extract.prior()

Summary: the content of the package

The kernel:
calibrating the

model

Data

Expert
knowledge

Best estimate
(RBNS/IBNR) Full cash-flow

(RBNS/IBNR)
dcl.predict

dcl.predict.prior
validating.incurred

Validation

dcl.boot

dcl.boot.prior
plot.cashflow

extract.prior

dcl.estimation

bdcl.estimation
idcl.estimation

plot.dcl.par

clm
plot.clm.par

8 run-off triangles
plot.triangle

Aggregate,get.incremental,

get.cumulative

Trying DCL

 We look for a wide audience (academics, practitioners,
students).

 The package has been published in the CRAN:

http://cran.r-project.org/web/packages/DCL/index.html

 Your feedback is very valuable:

María Dolores Martínez-Miranda

-Maintainer of the DCL package-

mmiranda@ugr.es

http://cran.r-project.org/web/packages/DCL/index.html
http://cran.r-project.org/web/packages/DCL/index.html
http://cran.r-project.org/web/packages/DCL/index.html
http://cran.r-project.org/web/packages/DCL/index.html
mailto:mmiranda@ugr.es

Appendix A: code -examples in this presentation

library(DCL)

data(NtriangleBDCL)

data(XtriangleBDCL)

Plotting the data

plot.triangle(NtriangleBDCL,Histogram=TRUE,tit=expression(paste('Counts: ',N[ij]))

plot.triangle(XtriangleBDCL,Histogram=TRUE,tit=expression(paste('Paid: ',X[ij])))

The kernel: parameter estimation

my.dcl.par<-dcl.estimation(XtriangleBDCL,NtriangleBDCL)

plot.dcl.par(my.dcl.par)

The best estimate (RBNS/IBNR split)

pred.by.diag<-dcl.predict(my.dcl.par,NtriangleBDCL)

Full cashflow considering the tail (only the variance process)

boot2<-dcl.boot(my.dcl.par,Ntriangle=NtriangleBDCL)

plot.cashflow(boot2)

Compare the three methods to be validated (three different inflations)

data(ItriangleBDCL)

validating.incurred(ncut=0,XtriangleBDCL,NtriangleBDCL,ItriangleBDCL)

test.res<-matrix(NA,4,10)

par(mfrow=c(2,2),cex.axis=0.9,cex.main=1)

for (i in 1:4)

{

 res<-validating.incurred(ncut=i,XtriangleBDCL,NtriangleBDCL,ItriangleBDCL,Tables=FALSE)

 test.res[i,]<-as.numeric(res$pe.vector)

}

test.res<-as.data.frame(test.res)

names(test.res)<-c("num.cut","pe.point.DCL","pe.point.BDCL","pe.point.IDCL",

"pe.calendar.DCL","pe.calendar.BDCL","pe.calendar.IDCL",

"pe.total.DCL","pe.total.BDCL","pe.total.IDCL")

print(test.res)

Extracting information about severity inflation and zero claims

data(NtrianglePrior);data(NpaidPrior);data(XtrianglePrior)

extract.prior(XtrianglePrior,NpaidPrior,NtrianglePrior)

Appendix B: Bootstrap methods

Appendix B: Bootstrap methods

